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1 Introduction to Partial Differential Equations

We will not be strictly following a textbook, but the main outline will about the same as
Introduction to Partial Differential Equations by Evans. The main difference will be when
we cover the theory of distributions. For this, you could use the book by Strichartz.1 A
more in-depth reference would be the book by Friedlauder. The hardcore option is volume
1 of Hormander’s books.

1.1 Basic notation for partial differential equations

Partial differential equations is the next level up from ordinary differential equations. For
ODEs, we have functions u : R→ R (or sometimes C→ C).

Definition 1.1. An ordinary differential equation is an equation F (u, u′, u′′, . . . , u(n)) =
0, where F is a function.

Example 1.1. A linear ordinary differential equation is of the form a0u + a1u
′ + · · · +

anu
(n) = f , where the ai are the coefficients.

Linear ODEs are generally covered in calculus, and nonlinear ODEs are generally cov-
ered in a class on ODEs. Further in this direction is the study of dynamical systems.

The above type of ODE is called a scalar equation.

Definition 1.2. A system of ordinary differential equations concerns u : R→ Rn with

u =

u1

...
un

 .
A partial differential equation concerns u : Rn → R (or C) with x = (x1, . . . , xn) and

∂ = (∂x1 , . . . , ∂xn) = (∂1, . . . , ∂n). Higher order partial derivatives look like: ∂2
1 , ∂1∂2, ∂

2
2 .

The solution for this notation is multiindices, where we denote ∂α1
1 ∂α2

2 · · · ∂αnn =: ∂α, where
α = (α1, . . . , αn) is a multiindex. In this case, the order is |α| := α1 + · · ·+ αn.

Definition 1.3. A partial differential equation looks like F (u, ∂u, . . . , ∂(m)u) = 0,
which we may also write as F (u(≤m)) = 0.

Example 1.2. Linear PDEs look like∑
|α|≤m

cα(x)∂αu = f.

If f = 0, we call this a homogeneous equation, and if f 6= 0, we call this an inhomo-
geneous equation. where f is the source term.

1Strichartz is alive at 102 years old, so this book is quite old!
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The course will be about 80% linear PDEs and about 20% nonlinear PDEs. Nonlinear
PDEs are generally harder and require knowedledge of corresponding linear PDEs to under-
stand. The exception, which we will study in this class, is first order scalar equations,
F (x, u, ∂u) = 0. This will require ODEs.

1.2 Scalar equations vs systems

Every scalar equation is already a system, but we can do better: If we have a scalar
equation F (u(≤m)) = 0, we can convert it to a first order system. We do this by basically
changing notation, writing the derivatives of u as separate functions: uα := ∂αu, where
|α| ≤ m. This changes the equation to F (u≤m) = 0, where u≤m refers to the collection of
α-partial derivatives of u with |α| ≤ m. The functions are related by ∂juα = uα+ej , where
ej = (0, . . . , 0, 1, 0, . . . , 0), with a 1 in the j-th coordinate.

This conversion is not a correspondence. The class of first-order systems is much more
complex than the class of scalar equations.

1.3 Important examples of linear PDEs

Example 1.3. The transport equation is the following linear PDE:

n∑
j=1

aj∂ju+ bu = f.

Example 1.4. The Laplace operator Is ∆ = ∂2
1 + · · ·+ ∂2

n. The Laplace equation is

−∆u = f.

Example 1.5. The heat equation is

∂tu−∆u = f.

Here, we think of u(x, t) as a function of x and t. You may think this is just a notational
convention, but in practice, it is very useful to think of one of the variables as representing
time.

The heat equation describes a system evolving in time, so we call it an evolution
equation. By contrast, the Laplace equation is a static equation. Notice that the
Laplace equation and the heat equation are the same in the case that u is constant with
respect to time. For this reason, we can interpret it as looking for the steady states of
the evolution equation.

Example 1.6. The wave equation is another evolution equation, given by

(∂2
t −∆)u = f.

The wave equation describes sound waves, electromagnetic waves, gravitational waves,
elastic waves, and more.
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The wave equation is an evolution equation, so it needs initial data. Write it as ∂2
t u =

∆u+ f . Compare this to Newton’s law: ∂2
t u corresponds to the acceleration, and ∆u+ f

corresponds to the force. We write our initial position as u(t = 0, x) = u0(x) and our initial
velocity as ∂tu(t = 0, x) = u1(x).

Example 1.7. The Schrödinger equation is a complex evolution equation of the form

(i∂t + ∆)u = 0.

Here, u is a complex function. This is the fundamental equation of quantum mechanics.

1.4 What do we want to study?

In calculus, you learn methods to calculate solutions to differential equations. This is not
the purpose of this course. We want to understand:

1. Existence: Does the equation have solutions?

2. Uniqueness: Is the solution the only one; i.e. does it definitively describe the behavior
of the system we are studying, or can we not tell?

3. Continuous dependence on data: If we change our initial data, how does the solution
change?

These three questions constitute well-posedness theory. We can also study:

4. Properties of solutions.
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2 Function Spaces and Ordinary Differential Equations

We are interested in studying first order nonlinear scalar PDEs, equations of the form
F (x, u, ∂u) = 0. Here is the battle plan: First, we will need to discuss function spaces
and an provide an introduction to ODEs. Then we will be able to study nonlinear, scalar
PDEs. We will study linear PDEs, then semilinear PDEs, and then work our way up to
studying nonlinear PDEs.

2.1 Function spaces

What functions could be solutions to a PDE? How do we verify that a function is a solution?
We need functions that are differetiable, but this is far from the only thing we will consider.

Suppose we have a function u : Rn → R.

Definition 2.1. The set of (bounded) continuous functions are denoted C(Rn). It
has the norm ‖u‖C(Rn) = supx∈Rn |u(x)|, C(Rn).

For now, we will assume these functions are bounded, but we may not do so later. If
Ω ⊆ Rn, we can similarly define C(Ω).

Definition 2.2. A normed space is a vector space equipped with a norm u 7→ ‖u‖ ≥ 0,
which satisfies

1. ‖u+ v‖ ≤ ‖u‖+ ‖v‖

2. ‖λu‖ = |λ|‖u‖ for λ ∈ R.

3. ‖u‖ = 0 =⇒ u = 0.

A Banach space is a normed space is a normed space which is complete, i.e. any Cauchy
sequence is convergent.

That is, if un ∈ X and limn,m→∞ ‖un − um‖ = 0, the sequence un must have a limit.

Example 2.1. R and C are complete.

Example 2.2. Equipped with the norm ‖u‖C(Rn) = supx∈Rn |u(x)|, C(Rn) is a Banach
space.

Example 2.3. C1 = {u ∈ C : u differentiable everywhere, ∂u ∈ C} is the space of con-
tinuously differentiable functions. This space has the norm ‖u‖C1 = ‖u‖C + ‖∂u‖C .

More generally, we may consider Cm(Rn). The set
⋂∞
m=1C

m(Rn) =: C∞(Rn) is the set
of smooth functions. In general, the smooth functions is too small a class of functions
to be the only focus of study in PDEs.

Here are examples of functions.
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Example 2.4. Observe that

u(x) =
1

1 + x2
∈ C(R),

while
v(x) = x2 /∈ C(R)

because it is not bounded.

Definition 2.3. Cloc(R) is the space of continuous but not necessarily bounded
functions.

Example 2.5. If IN = [−N,N ], we can try to use ‖u‖C(IN ) = supx∈IN |u(x)|. We would
be able to get countably many of these to measure convergence of functions. But this is
not a norm on all of R, since it assigns 0 to nonzero functions. This is a seminorm.

Definition 2.4. A seminorm is a norm without the property that ‖u‖ = 0 =⇒ u = 0.

What does convergence look like with respect to seminorms? What happens is that
un → u in Cloc if ‖un − u‖C(IN ) → 0 for each N . So we extend the concept of a normed
space to a locally convex space, where instead of a norm, we may have infinitely many
seminorms.

Why is this called locally convex? In Rn, we can specify convergence by a fundamental
system of neighborhoods, balls around each point. Another property of balls is that they
are convex. If we want to talk about convergence in a locally convex space, we can also
do it using by specifying convex balls. We could have many different types of balls around
any point defined by different seminorms.

From this point on, we will use C to refer to Cloc. So our functions may be unbounded.

Example 2.6. The seminorms for Cm(Rn) look like

pK,N (u) = sup
x∈K

sup
|α|≤N

|∂αu(x)|,

where K ⊆ Rn is compact.

Later, we will study more function spaces, such as Sobolev spaces.

2.2 Ordinary differential equations and Lipschitz functions

A (nonlinear) ODE regards a function u : R→ R which solves an equation of the form{
u′ = F (x, u(x))

u(0) = u0.
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If we let the codomain be Rn, we get a system of equations.
If this equation solvable? We are asking about existence of solutions, uniqueness of

solutions, dependence of solutions on initial data, and local vs global solutions. At the
minimum, we require that F is continuous and look for a C1 local solution.

Theorem 2.1 (Peano). If F is continuous, then a local C1 solution exists.

However, uniqueness can fail, as the following example shows.

Example 2.7. Consider the equation u′(x) =
√
u with u(0) = 0. One solution is u = 0.

Alternatively, u = x2/4 is another solution for x > 0. We can extend this second solution
to a global solution by making it 0 for x ≤ 0. Moreover, we can translate this solution to
the left or right to get another solution. So there are infinitely many solutions.

Example 2.8. Consider the equation u′ = |u|α. If we check u = xβ, we get that β = 1
1−α .

We can consider this with a range of α, up to any α < 1. What happens when α = 1? The
function |u|α becomes Lipschitz.

Definition 2.5. A function F is Lipschitz continuous with Lipschitz constant L if

|F (x)− F (y)| ≤ L|x− y| ∀x, y.

The Lipschitz functions form a Banach space when equipped with the norm ‖F‖C +

‖F‖Lip, where ‖F‖Lip := supx,y
|F (x)−F (y)|
|x−y| which gives the “best” Lipschitz constant L.

Lipschitz functions have bounded slope, so it is reasonable to compare the spaces Lip
and C1. What is the relationship? We have C1 ⊆ Lip. In 1 dimension, we can see this by
the mean value theorem: F (x)−F (y) = F ′(c)(x− y) for some x ∈ (x, y). For more than 1
dimension, we can still restrict the function to its values on a line connecting x, y to reduce
to the 1 dimensional case.

However, Lip 6⊆ C1.

Example 2.9. The function F (x) = |x| is 1-Lipschitz but not C1.

Remark 2.1. It actually turns out that a Lipschitz function is differentiable outside a set
of measure zero, but we will not use this.

This inclusion of Banach spaces is actually very nice because by the mean value theorem,
we can use the same norm for both Lip and C1.

2.3 Hölder continuous functions and fixed point methods

Starting from the continuous functions C0, we have the subspaces C0 ⊇ Lip ⊇ C1. Is there
anything in between C0 and Lip?

Definition 2.6. The α-Hölder continuous functions are Cα(R) = {F : |F (x)−F (y)| ≤
M |x− y|α} for 0 < α < 1, equipped with the norm ‖F‖Cα := sup |F (x)−F (y)|

|x−y|α .
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Remark 2.2. If α > 1, the only functions that work are the constant functions.

Returning to our previous example, the function |x|α is α-Hölder continuous.

Theorem 2.2. If G is locally Lipschitz, then a local solution exists and is unique.

Here is the beginning of the proof:

Proof. Restate the problem using the fundamental theorem of calculus. Integrating the
equation gives

u(x) = u(0) +

∫ x

0
F (y, u(y)) dy.

This allows us to think of the problem as a fixed point problem. Define the map C1 3
u 7→ N(u)(x) := u(0) +

∫ x
0 F (y, u(y)) dy. Observe that u solves our ODE if and only if

N(u) = u. That is, we want u to be a fixed point of N .

In 1-dimension, if we have f : R→ R, when do we have fixed points f(x) = x? We can
look for the points where the graph of f intersects the line y = x. One thing we can do to
get fixed points is ask that the function does not increase very fast: |f ′| < 1. In this case,
f will have a unique fixed point.

We have just stated the following theorem:

Theorem 2.3. If f : R→ R with |f ′| < 1, then f has a unique fixed point.

This fact extends to Banach spaces.

Theorem 2.4. Let B be a Banach space. If f : B → B is Lipschitz with Lipschitz constant
L < 1 (‖f(x)− f(y)‖ ≤ L‖x− y‖), then f has unique fixed point.

This is not sufficient for us because we are not looking at the entire space of C1 functions.
We only want local solutions.

Theorem 2.5 (Banach contraction principle). If f : D ⊆ B → D with D closed is Lipschitz
with constant < 1, then f has a unique fixed point.

Example 2.10. We need the domain D to be closed. If D = (0, 1) and f(x) = x/2, then
f has no fixed points. But adding the endpoints of the interval rectifies this.

Next time, we will further discuss this fixed point theorem.
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3 Well-Posedness for ODEs

3.1 Local existence and uniqueness for ODEs

Last time, we were studying a local posedness theorem for ODEs.

Theorem 3.1. Suppose F is locally Lipschitz; i.e. the restriction to any compact set is
Lipschitz. Then the ODE {

u′ = F (x, u)

u(0) = u0

has a unique local solution u ∈ C1([0, T ]).

Our main tool was Banach’s contraction principle.

Lemma 3.1 (Contraction principle). Let D ⊆ B be a closed subset of a Banach space,
and let N : D → D be a contraction, i.e. lip(N) < 1. Then N has a unique fixed point.

This principle is useful not just in the study of ODEs but in PDEs as well. Here is a
sketch of the proof.

Proof. We first prove uniqueness. Suppose x = N(x) and y = N(y). Then

‖x− y‖ = ‖N(x)−N(y)‖ ≤ L︸︷︷︸
<1

‖x− y‖.

This can only happen if ‖x− y‖ = 0, which implies x = y.
For existence, start with x0 ∈ D. Try to improve your guess successively by setting

x1 = N(x0), x2 = N(x1), and so on. To see that this is convergent, observe that

‖x2 − x1‖ = ‖N(x1)−N(x0)‖ ≤ L‖x1 − x0‖.

Iterating this gives
‖xn+1 − xn‖ ≤ Ln‖x1 − x0‖.

This suggests we can think of xn as a sort of geometric series:

xn = xn − xn−1︸ ︷︷ ︸
≤Ln−1

+xn−1 − xn−2︸ ︷︷ ︸
≤Ln−2

+ · · ·+ x0.

A geometric series is convergent, so the sequence xn converges to some limit x. Since
xn+1 = N(xn) taking the limit of both sides gives x = N(x).

This method of contraction is very useful when studying nonlinear PDEs. Now we can
prove our ODE theorem:
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Proof. We need N , B, and D. We obtain the map N by applying the fundamental theorem
of calculus2 to the ODE:

N(u)(x) = u0 +

∫ x

0
F (y, u(y)) dy.

Our Banach space will be C([0, T ]), where we need to figure out what is T . We want u to
be locally Lipschitz, so we will define D = {u ∈ C([0, T ]) : ‖u − u0‖C ≤ R}; we will also
need to figure out what is R.

To figure out T,R, we have a few conditions:

1. We need N maps D → D. For u ∈ B(u0, R),

|F (u)| ≤ |F (u0)|+ |F (u)− F (u0)|
≤ |F (u0)|+ LR

Suppose R ≤ 1. Then

|N(u)(x)− u0| ≤
∫ x

0
|F (y, u(y))| dy

Bound this above by the length of the integral times the size of the integrand.

≤ T · (|F (u0)|+ LR)︸ ︷︷ ︸
C

We can pick T � 1 is small enough such that

≤ R

2

2. N needs to be a contraction:

|N(u)−N(v)| ≤
∫ x

0
|F (y, u(y))− F (y, v(y))| dy

2The idea is that the differential operator is unbounded, so you “lose” something when applying it. By
contrast, when you integrate, you “gain” something.
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≤
∫ x

0
L|u(y)− v(y)| dy

≤ T · L · ‖u− v‖C .

Picking T small enough, we get

‖N(u)−N(v)‖ ≤ TL︸︷︷︸
<1

‖u− v‖.

By the contraction principle, there exists a unique solution u for the integral equation
in D. If u solves the integral equation, then the right hand side of the integral equation
is continuous. This implies that u ∈ C1 (as integrating a continuous function gives a C1

function).
The other issue is that our uniqueness statement is for functions in D. For uniqueness,

is there any other solution which exits B(u0, R)?

One solution is to find a T0 small enough such that u(T0) 6= v(T0) but ‖v− u0‖ ≤ R in
[0, T0] and apply the contraction principle in [0, T0]. This gives u = v in [0, T0].

Another solution is as follows. Denoting T0 as the exit time of the ball of radius R, if
v : [0, T0] → B(u0, R), our previous computation gives ‖v − u0‖ ≤ R/2. This is known as
a bootstrap argument.

3.2 Maximal solutions to ODEs

Now that we have proven existence and uniqueness of local solutions, let us move to the
question of global solutions. Can we extend our local solution to global solutions?
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This leads us to the idea of a maximal solution.

Definition 3.1. A maximal solution u is a solution to the differential equation that
cannot be extended to a larger domain.

In general, global solutions may not exist!

Example 3.1. Consider the equation{
u′ = u2

u(0) = u0 > 0.

By explicit computation, we can see u(t) = 1
T−t , where T = 1/u0.

How do we compute maximal solutions? Suppose u1 : [0, T1]→ Rn and u2 : [0, T2]→ Rn
are two solutions. Can we compare them? Suppose T1 ≤ T2. Then we can compare them
up to time T1.
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Can this picture occur? Choose T to be maximal such that u1 = u2 in [0, T ]. If
T < T1, then by local well-posedness, we must have u1 = u2 in [T, T + ε]. This contradicts
the maximality of the choice of T , so we must have T < T1. The conclusion is that as long
as both solutions exists, the must be equal on the interval they share. The set of solutions
is therefore ordered by inclusion, and a maximal solution exists.3

What can we say about maximal solutions? A maximal solution will look like u :
[0, T )→ Rn. The limit limt→T u(t) cannot exist, or else we could solve the equation again
from time T .

Proposition 3.1. If T <∞,
lim
t→T
|u(t)| =∞.

Proof. Suppose not. Then there exists a sequence tn → T such that |u(tn)| ≤ M . Start
solving from tn. We get a solution on the time interval [tn, tn + Tn], where Tn is given by
the local existence theorem. Since |u(tn)| ≤M , the theorem gives Tn = T0 not depending
on n. If tn + T0 > T , then we get a contradiction because our solution extends beyond
T .

Remark 3.1. This proposition says nothing about what will happen to global solutions.

3.3 Continuous dependence on data

Suppose u : [0, T ] → Rn is our reference solution with data u0, and we vary some v with
initial data v0. We want to know if v0 → u0, does that mean v → u in C([0, T ])?

Theorem 3.2.

(a) If |v0 − u0| is small enough, then v exists on [0, T ] and satisfies ‖v − u‖∞ ≤ 1.

3We do not need the axiom of choice in this case because the time intervals are totally ordered, so we
can just take the union.
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(b) If v0 → u0, then v → u in C([0, T ]).

Try to track |u− v|2:

d

dt
|u− v|2 = (u− v) · d

dt
(u− v)

= (u− v)(F (u)− F (v))

≤ |u− v| · L|u− v|
= L|u− v|2.

We also have |u − v|2(0) = |u0 − v0|2. Here, we have what might be called an ordinary
differential inequality for u − v. If we had equality, then we would get |u − v|2 ≤
|u0 − v0|2eLt. Otherwise, we hope to get |u− v|2 ≤ |u0 − v0|2eLt. This step is the simplest
form of what is known as Grönwall’s inequality. Next time, we will discuss this inequality.
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4 Continuous Dependence of ODEs on Initial Data and Clas-
sifications of PDEs

4.1 Continuous dependence of ODEs on initial data

Last time, we were discussing solving ODEs ofthe form{
u′ = F (t, u)

u(0) = u0.

We showed the following last time.

Theorem 4.1. If F is locally Lipschitz, there exists a unique solution to the ODE.

Today, we will talk more about continuous dependence of the solution on the initial
data. So if we have v′ = F (t, v) with v(0) = v0, we want to say that if v(0) is close to u(0),
then v should be close to u.

Theorem 4.2. Suppose that the solution u exists on [0, T ]. Then there exists ε > 0 such
that if |v0 − u0| < ε, then v exists on [0, T ] and

‖u− v‖C ≤ c|u0 − v0|.

That is, the map u0 7→ u|[0,T ] is locally Lipschitz.

Proof. We compute

d

dt
|u− v|2 = 2(u− v) · (u− v)t

= 2(u− v) · (F (u)− F (v))

If F is Lipschitz,

≤ 2L|u− v|2.

So if f(t) = |u− t|2, then f ′(t) ≤ 2Lf(t) with f(0) = |u0− v0|2. We claim that this implies
that f(t) ≤ f(0)e2Lt. This is called Grönwall’s inequality.

Lemma 4.1 (Grönwall’s inequality4). If f ′(t) ≤ 2Lf(t), then f(t) ≤ f(0)e2Lt.

Proof. Let g(t) = e−2Ltf(t). It suffices to show that g is nonincreasing. We have g′(t) =
e−2Ltf ′(t)− 2Le−2Ltf(t) ≤ 0.

The proof is finished except for:

4More generally, we can prove this theorem with the same argument for f ′(t) ≤ h(t)f(t).
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(a) If F is not globally Lipschitz.

(b) We do not know that v exists up to time T .

Suppose we have our solution u with initial data u. Consider two neighborhoods of
u: a neighborhood D1 = {v ∈ C([0, T ]) : ‖v − u‖ ≤ 1} of size 1 and a neighborhood
D2 = {v ∈ C([0, T ]) : ‖v − u‖ ≤ 2} of size 2.

Suppose we know that v ∈ D2. Then v is defined on [0, T ], and stays in a compact set,
so the above argument applies. How do we know v says in D2? Suppose this is not true,
so there is a time T2 at which v exits D2; then v must exit D1 first.

By Grönwall’s inequality applied to T2, we have

|u(t)− v(t)|2 ≤ |u0 − v0|2 · e2LT2 , t ∈ [0, T2]

≤ ε2e2LT

Choosing ε sufficiently small,

≤ 1.

This implies that v does not exit D1, which is a contradiction; to exit D2, v must first exit
D1.

Remark 4.1. Suppose we want to prove that if ε � 1, then ‖u − v‖ ≤ 1. We made a
bootstrap assumption ‖u − v‖ ≤ 2 and used this assumption to prove ‖u − v‖ ≤ 1.
This is called a bootstrap argument. These kind of bootstrap arguments are useful in
nonlinear PDEs, when you don’t even know whether a solution exists.

4.2 Linearizing an equation

Assume F ∈ C1 and suppose we have initial data u0
0. Take a one-parameter family of data

uh0 with h close to 0, so this is differentiable in h. Let u0
0 give a solution u0 and uh0 give a

19



solution uh. We can ask: how does uh depend on h? We know that if |uh0 − u0
0| . h, then

|uh − u0| . he2LT (with the notation A . B meaning A ≤ cB for some constant c).
Here is a formal computation: If u̇h = F (t, uh(x)), we want to compute an equation for

vh = d
dhu

h.

Apply d
dh to get

v̇h = DF (t, uh)vh, vh(0) =
d

dh
uh0 .

This is a linear equation for vh. It is called a linearized equation. This allows us to
pass from one solution to another solution nearby.

Does the derivative actually exist? Let’s compute:

d

dt
(uh − u0) = F (t, uh(T ))− F (t, u0(t))

Think of this as a Taylor expansion

= DF (t, u0(t))(uh(t)− u0(t)) + o(uh(t)− u0(t)︸ ︷︷ ︸
o(h)

)2.

Then

d

dt

uh − u0

h
= DF (t, u0(t))

uh − u0

h
+ o(h).

As h→ 0, uh−u0

h (0)→ v0. So in the limit, we get uh−u0

h → v0, which is the solution to the
linearized equation.

4.3 Classifications of first order scalar PDEs

We will study first order scalar PDEs. In these equations, we have u : Rn → R, with

F (x, u, ∂u) = 0.

Evans’ textbook uses Du instead of ∂u, but we will use this notation for something else
later in the course.

Here is a classification by degree of difficulty:
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• Linear: ∑
j

Aj(x)∂ju+B(x)u = f(x).

We can succinctly write this as a · ∂u+ bu = f .

• Semilinear: ∑
j

Aj(x)∂ju+ b(x, u) = 0.

Here, the nonlinearity is only in u, not in the derivatives.

• Quasilinear: ∑
j

Aj(x, u)∂ju+ b(x, u) = 0.

• Fully nonlinear:
F (x, u, ∂u) = 0.

If we differentiate a fully nonlinear PDE, we get a quasilinear PDE, but we get a system.
For these equations, some things we know about scalar equations will not apply to systems.

What is our initial data? In Rn, we take a surface Σ and specify u|Σ = u0 on the
surface.

Definition 4.1. The equation plus our initial data is called an initial value problem or
a Cauchy problem.

Another way we can classify partial differential equations is by static equations (at fixed
time) and dynamic equations (evolution in time). This is a classification imposed less by
the equations themselves and more by the motivation of the PDEs.

Example 4.1. The equation
ut = F (x, u, ∂xu)

with u : Rt×Rx → R is a dynamic or evolution equation. The steady states are solutions
to the equation 0 = F (x, u, ∂xu).

4.4 First order linear scalar PDEs

We are looking at the equation ∑
j

Aj(x) · ∂ju = bu+ f,

which we can write as
A · ∇u = bu+ f,
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where A · ∇u is the directional derivative of u in the direction A.
Let’s start with a simpler case, where A(x) = A does not depend on x. Then we can

look at lines which point in the direction at A: x = x0 + tA. Look at the function u along
these lines: u(x0 + tA).

d

dt
u(x0 + tA) = A∇u

= bu(x0 + tA) + f.

This is a linear ODE for u(x0 + tA).

If A is not constant, can we do the same thing? Instead of straight lines, we need curves.
In particular, we need curves which are tangent to A at each point.

Do such curves exist? The ODE ẋ(t) = A(x(t)) has C1 solutions by ODE theory (where
A ∈ C1). So, given a point x, there is a unique curve starting from x that stays tangent
to A. This is called an integral curve of A. We can calculate

d

dt
u(x(t)) = ∇u · ẋ(t) = A∇u = bu(x(t)) + f,

which is an ODE for u. So if A is not constant, solving the PDE is like solving 2 ODEs: one
that gives integral curves and one that tracks the solution u along each integral curve. Next
time, we will look at what happens when we try to assign this initial data on a surface.
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5 Local Solutions for Linear, Semilinear, and Quasilinear
Scalar PDEs

5.1 Local solutions for linear, scalar PDEs

Last time, we were studying linear, scalar PDEs of the form

Aj∂ju︸ ︷︷ ︸
directional derivative

+bu = f.

The initial curves (or characteristics) of A were the solutions to the ODE

ẋ = A(x), x(0) = x0

Along the integral curves, the PDE looks like

d

dt
u(x(t)) + b(x(t))u(x(t)) = f(x(t)),

so solving the PDE is like solving two ODEs.
If we assume A ∈ C1, then x(t, x0) ∈ C1. We want these characteristics to locally

foliate Rn; that is, we want them to cover the domain. One issue: what if A(x0) = 0?
Then x(t) = x0 for all t!

Example 5.1. Consider A that gives

ẋ1 = x2, ẋ2 = −x1.

Then the integral curves will be circles, so A(0) = 0.

The fix for this problem is to assume that A(x) 6= 0 for any x.
Now suppose we have initial data u(x) = u0(x) on a curve Σ. If we start at an x0 on

the curve or surface Σ, we can look at the integral curve starting from x0.
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From x0 ∈ Σ and t ∈ [−ε, ε], we can construct x(t, x0). Once we know u(x0), we can solve
the second ODE to get u(x(t, x0)), where x(t, x0) ∈ C1. So by our ODE theorem, we will
get u ∈ C1.

What are the bad cases?

• The integral curve may intersect Σ twice.

We might still get a local solution if we look at a small enough neighborhood of x0.

• A may be tangent to Σ, and re-intersection can happen arbitrarily close.

Even if re-intersection is not arbitrarily close, there may be a more subtle issue with
the solution not being C1.

Here is how we avoid this issue.

Definition 5.1. We say that Σ is noncharacteristic for our PDE if A · N 6= 0 on Σ,
where N is the normal to Σ.
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This says that A is not tangent to Σ at any point.

Theorem 5.1. Assume A, b, f,Σ, u0 ∈ C1, and suppose that Σ is noncharacteristic. Then
the equation

Aj∂ju+ bu = f

with initial data u0 has a unique C1 local solution.

Proof. Step 1: For x0 ∈ Σ, solve for the characteristic Σ× [−ε, ε] 3 (x0, t) 7→ x(x0, t).
Step 2: Solve the ODE

d

dt
u(x(t)) + b(x(t))u(x(t)) = f(x(t))

along the characteristics to get u(x(t, x0)), which is C1 in t and x0.
Step 3: Show that our characteristics foliate a neighborhood of Σ. What does this

mean? Looking at the map (x0, t) 7→ x(t, x0). We want this to be a local diffeomorphism,
i.e. a C1 map with a C1 inverse. Recall the following theorem from real analysis:

Theorem 5.2 (Local inversion theorem). Let F : Rn → Rn ∈ C1. If det dF (x0) 6= 0, then
F is a local diffeomorphism.

We would like to change coordinates so that Σ is a hyperplane.

Since Σ is C1, locally, Σ is the graph of a C1 function, xn = f(x′), x′ = (x1, . . . , xn−1)
with f ∈ C1. The new coordinates are y = (x′, xn − f(x′)). To check that this is a local
diffeomorphism, the theorem says we should look at

∂y

∂x
=

[
∂y′

∂x′
∂y′

∂xn
∂yn
∂x′

∂yn
∂xn

]
=

[
In−1 0
−df 1

]
,

which has determinant 1. Check that the coefficients remain C1 after changing coordinates.
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In the new coordinates, Σ = {yn = 0}, y′ = (y1, . . . , yn−1) are coordinate on Σ, and we
are looking at the equation ẏ = A(y). Here, y = y(t, y′0). Look at ∂y

∂(y′0,t)
at t = 0. When

t = 0, y(y′0, 0) = (y′0, 0). So

∂(y′, yn)

∂(y′0, t)
=

[
∂y′

∂y′0

∂y′

∂t
∂yn
∂y′0

∂yn
∂t

]
=

[
In−1 0
A′ An

]
.

So det ∂y
∂(y′0,t)

= An 6= 0, precisely from our noncharacteristic surface property.

Remark 5.1. In the above proof, we reduced the situation to the case where Σ is a
hyperplane. Let’s use this to model the noncharacteristic case. Using coordinates (x, t),
we can write Σ = {t = 0}.

Our equation looks like

At · ∂tu+A1 · ∂1u+ · · ·+An · ∂nu+ bu = f.

where At 6= 0 by the noncharacteristic assumption. So we may divide by it and just look
at equations of the form

∂tu+A1 · ∂1u+ · · ·+An · ∂nu+ bu = f.

This is only a local modelling, however, not necessarily a global one.

5.2 Semilinear PDEs

Now we move on to solving semilinear PDEs, of the form{
Aj(x)∂ju+ b(u, x) = 0

u|Σ = 0
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The characteristics are still ẋ = A(x) (so x = x(x0, t)), and our noncharacteristic initial
surface condition is still A ·N 6= 0 on Σ. The evolution along the characteristics is

d

dt
u(x(x0, t)) = −b(u(x(x0, t)), x(x0, t)).

The difference from before is that our second equation is a nonlinear ODE, so it may
have finite time blow-up. So local well-posedness is identical to the linear case, but global
well-posedness may fail because the second ODE blows up.

5.3 Quasilinear PDEs

Now we look at the quasilinear problem{
Aj(x, u)∂j(u) + b(x, u) = 0

u|Σ = u0.

Our characteristics now look like ẋ = A(x, u). We cannot solve this because we do not
know what u is outside of Σ. The second equation would read u̇ = b(x, u). These two
ODEs would be true if we already had a solution, but we cannot solve them. What if we
put these two equations together into a system?{

ẋ = A(x, u)

u̇ = b(x, u)

We call this a characteristic system.
The initial data for the characteristic system is{

x(0) = x0 ∈ Σ

u(0) = u(x(0)) = u0(x0),

where the second initial condition depends on u0. In this situation, our noncharacteristic
Σ condition is

A(x0, u0(x0)) ·N 6= 0.

Our local well-posedness theorem is identical: If Σ is noncharacteristic and u0 ∈ C1,
then there exists a unique local C1 solution u.

The key difference is that the characteristics may now intersect. In the semilinear case,
suppose two characteristics were to intersect. Then the characteristic equation would have
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the same data, so the two characteristics must be the same.

In the quasilinear case, the initial data is both the location and the value of the function.
Intersection means that x(t) = y(t), but it does not necessarily mean u(x(t)) = u(y(t)).
So we cannot say that the two characteristics must be the same.

Next time, we will talk about what might make characteristics intersect and what to do
about it.
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6 Quasilinear and Nonlinear First Order PDEs

6.1 Quasilinear PDEs and conversation laws

Last time, we were looking at first order, quasilinear, scalar PDEs∑
j

Aj(x, u)∂ju+ b(x, u) = 0.

We saw that our characteristics have to consider both x and u. We need to solve the
characteristic system {

ẋ = A(x, u)

u̇ = −b(x, u)

to get a local solution. Because characteristics carry information about x and u, there was
no prohibition against characteristics intersecting.

What is a noncharacteristic surface in this setting? If our initial data is u|Σ = u0, then
the noncharacteristic condition becomes

A(x0, u0(x0)) ·N 6= 0 on Σ.

Remark 6.1. The condition of being noncharacteristic depends both on the surface and
on the initial data on the surface. So the problem is noncharacteristic, rather than the
surface (until we have a fixed set of initial data).

The model problem is{
∂tu+

∑
j Aj(x, u)∂ju+ b(x, u) = 0

u|t=0 = u0

Since we are already using t, let’s use s as the parameter along the chracteristics. We have
ṫ = 1

ẋ = A(x, u)

u̇ = −b(x, u)

The first equation tells us that we can choose s = t. This corresponds to a dimensionality
reduction of our problem.

Example 6.1. A special case of this is what we call conservation laws:

ut + ∂jFj(u) = 0.

We can equivalently write this as

ut + F ′j(u)∂ju = 0.
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Using the first form is not important for scalar equations, but it is for scalar systems
because it is not always the case that we can write the second version with a divergence
term.

The first version is called density flux notation. This is because the ut tells how the
density of some quantity changes in time, and the flux term, ∂jFj(u), tells you how the
mass is moving with velocity F ′j(u).

6.2 Burgers’ equation

Example 6.2. The simplest quasilinear problem is the Burgers’ equation{
ut + uux = 0

u|t=0 = u0.

This equation seems simple, but it ends up being a model problem for more complicated
equations. Here are the characteristics:{

ẋ = u

u̇ = 0.

Thus, the characteristics are x(t) = x0 + tu0(x0). Here, the characteristics may intersect
as follows:

How would we choose our data so the lines don’t intersect? If u0 is increasing, the picture
looks like this:
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So we get a global solution forward in time, but we don’t get a global solutions backward
in time. So the only global solutions are constant.

Remark 6.2. In physics, we expect there to be causality. That is, we expect the future
to be determined by the past but not the past to be determined by the future. Later we
will see what we will do after the point where characteristics intersect.

Let’s give an equation for ux:

utx + uuxx + u2
x = 0.

If we write ux = v, then this equation is just talking about the derivative along the
characteristics:

(∂t + u∂x)v + v2 = 0.

We may also write this as
v̇ + v2 = 0,

where the dot is the derivative along the characteristic. This equation tells us how the
slope of the solution is evolving.

If v0 > 0, the slope decreases toward 0. However, if v0 < 0, we get finite time blow-up.

The smallest slope means the fastest blow-up. Suppose the initial data u0 is decreasing,
so we will get intersections of characteristics. Then the time with the most negative slope
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will be the time of blow up for x.

Because things intersect, there is no unique way to continue the equation. Here, we
have a shock, or a jump discontinuity. We will see later how to find what the equation for
the shock curve looks like.

Conservation laws is still a very active area, with a number of hard problems.

6.3 Fully nonlinear problems

We now look at PDEs of the form {
F (x, u, ∂u) = 0

u|Σ = u0,

where the dependence on ∂u is nonlinear. Where do we start? Before, we had a vector
field that let us interpret the equation using a directional derivative.

Let’s look at the linearized equation: Suppose we have not just a solution but a 1-
parameter family of solutions uh to our problem with solution vh to our linearized equation
given by

d

dh
uh = vh.

Differentiate the equation with respect to h to get the linearized equation:

0 =
∂

∂h
F (x, uh, ∂uh) = Fu · vh + Fpj · ∂jvh,

where we write F = F (x, u, p) and p = (p1, . . . , pn) (in Rn).
This linearized equation is a linear transport equation. So we get a vector field Aj =

Fpj (x, u, ∂u). We should try to use this vector field to find characteristics. Our equation
looks like {

ẋj = Fpj (x, u, ∂u)

u̇ = · · ·
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The first equation depends on ∂u, so we may try to add an equation ∂̇u = · · · . But then
we would get ∂2u in this equation, and we would be in the same situation. How do we get
past this issue?

Suppose F (u, ∂u) = 0. We say that this equation is invariant with respect to transla-
tions. This means that if u(x) is a solution, u(x+ hy) is a solution, as well. This produces
a 1-parameter family of solutions. This implies that y · ∂u solves the linearized equation.
In particular, we can use this as our equation for ∂̇u. Here is the computation:

ẋj = Fpj (x, u, ∂u)

u̇ = Fpj (x, u, ∂u) · ∂u = directional derivative of u in the Fpj direction
˙∂ju = −Fxj (x, u, ∂u)− Fu(x, u, ∂u) · ∂ju,

where we calculate the last equation by

0 = ∂jF (x, u, ∂u)

= Fxj (x, u, ∂u) + Fu(x, u, ∂u)∂ju+ Fpk(x, u, ∂u)∂k∂ju︸ ︷︷ ︸
˙∂ju

.

We still have a problem. Suppose we solve the above system. We are treating the
function u and its derivatives as separate objects, so how do we know that the solutions
are still related to each other? First, let’s summarize what we have done so far in a
proposition:

Proposition 6.1. If u ∈ C2, then (x, u, ∂ju) solve the characteristic system
ẋj = Fpj (x, u, ∂u)

u̇ = Fpj (x, u, ∂u) · ∂u
˙∂ju = −Fxj (x, u, ∂u)− Fu(x, u, ∂u) · ∂ju.

When we solve the system, use the notation z instead of u and pj instead of ∂ju because
we are solving this equation without enforcing the relationship between these objects. The
characteristic system becomes

ẋj = Fpj (x, z, p)

ż = Fpj (x, z, p) · pj
ṗj = −Fxj (x, z, p)− Fz(x, z, p) · pj .

What is the initial data for this system? We had x(0) = x0 and u(0) = u0 before, but now
we have 

x(0) = x0

u(0) = u0

∂u(0) =?
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We need the information of all the derivatives of u at x0. In particular, we need both n−1
tangential derivatives to Σ and 1 normal partial derivative to Σ.

If we frame this in the tangent space, we want the tangent derivative ∂′ = (∂1, . . . , ∂n−1)
and the normal derivative ∂n. We know ∂′, but what about ∂n? We know that

F (x0, u0, ∂
′u0, ∂nu) = 0,

so we would like to solve for ∂nu. This tells us that

∂nu = G(x0, u0, ∂
′u0)

for some function G. We can do this if

Fpn(x0, u0, ∂
′u0, pn) 6= 0.

If we did not put our equation in this special frame, this condition reads as

Fp(x0, u0, p) ·N 6= 0,

the condition that the equation is noncharacteristic.

Remark 6.3. What if this equation has more than 1 solution? We may not get uniqueness;
the answer may depend on our choice here of initial data.
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7 Existence of Solutions to Nonlinear First Order Scalar
PDEs

7.1 Proving existence and uniqueness given initial data

Last time, we were looking at fully nonlinear equations{
F (x, u, ∂u) = 0

u = u0 on Σ.

If u solves this equation, then (x, u, ∂ju) solves the characteristic system
ẋ = Fp(x, z, p)

ż = Fp(x, z, p) · p
ṗ = −Fx(x, z, p)− Fz(x, z, p) · p.

The initial data for the characteristic system on Σ is
x(0) = x0

z(0) = u0(x0)

p(0) = p0,

where p0 has a tangential component ∂τu0 and a normal component given by solving
F (x0, u0, p0). In this last part, we had a local solvability condition Fp ·N 6= 0, where N is
the normal to Σ. This is the same as the noncharacteristic condition.

Our objective is to turn this into an existence proof.

Theorem 7.1. Assume that F is of class C2, Σ is C2, u0 ∈ C2, and the problem is
noncharacteristic, i.e. there exists p0 on Σ such that Fp0 · N 6= 0, F (x0, u0, p0) = 0, and
(p0)τ = ∂τu0. Then there exists a unique local solution u ∈ C2 near Σ such that u|Σ = u0

and ∂u|Σ = p0.

Proof. First, an outline:
Step 1: Solve the characteristic system with initial data (x0, u0, p0) on Σ. This gives us

(x(s, x0), u(s, x0), p(s, x0)),

which we can solve by using ODE theory.
Step 2: Show that the map

Σ× [−ε, ε] 3 (x0, s) 7→ x(x0, s) ∈ Rn

is a local diffeomorphism with inverse

x 7→ (x0, s).
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Step 3: Define
u(x(s, x0)) = z(s, x0).

This is true if a solution u exists.
The main difficulty is that at the end of our construction, we get the functions

z(s, x0) = u(x), x = x(s, x0), pj(s, x0)
?
= ∂jz(x).

Our final goal is to prove that pj(s, x0) = ∂jz(s, x0). By construction of our initial data, we
know this is true at s = 0. Ideally, we might want to show that ∂

∂s(pj − ∂jz) = 0. Instead,
we will have a weaker version that works:

∂

∂s
(pj − ∂jz) = coeff(pj − ∂jz),

which is a linear ODE for pj − ∂jz.
Our preliminary step is to show that F (x, z, p) = 0. This is true on Σ, i.e. when s = 0.5

Compute
d

ds
F (x, z, p) = Fx · ẋ+ Fz · ż + Fp · ṗ = 0.

Next, compute ∂
∂s(pj − ∂jz). We have

∂

∂s
= (−Fxj − Fz · pj),

but to calculate ∂
∂s∂jz, we need to use ż = Fp · p. We have ∂

∂s = Fpk · ∂
∂xk

, where Fpk has
variable coefficients. So the derivatives do not commute. We can explicitly compute

∂

∂s
∂jz = Fpk∂k∂jz,

∂j ż = ∂j(Fpk∂kz) = Fpk∂j∂kz + ∂jFpk · ∂kz,

which gives
∂

∂s
∂jz = ∂j ż − ∂jFpk · ∂kz.

So we get

∂

∂s
(pj − ∂jz) = −Fxj − Fz · pj − ∂j ż + ∂j(Fpk) · ∂kz

= −Fxj − Fz · pj − ∂j(Fpk · pk) + ∂ · (Fpk)∂kz

5This is the same thing we wanted to do with pj − ∂jz, but that is more difficult to work with because
that is a vector equation, rather than just a scalar equation.
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= −Fxj − Fz · pj − Fpk∂jpk−pk(Fxjpk + Fzpk∂jz + Fp`pk∂jp`) + ∂kz(same)︸ ︷︷ ︸
−(pk−∂kz)·∂jFpk

= −Fxj − Fz · pj − Fpk∂jpk + good.

We also have

Fxj + Fz · ∂jz + Fpk∂jpk = 0

by taking ∂
∂xj

of our earlier computation. This last term Fpk · ∂jpk is the same worst term

in the above expression. If we substitute, we get

∂

∂s
(pj − ∂jz) = −Fz(pj − ∂jz)− ∂jFpk(pk − ∂kz),

which is a linear system.
Therefore, z is the solution to our equation, and we are done.

7.2 Problems in standard form

Example 7.1. Begin with the equation

ut + F (t, x, u, ∂u) = 0

We will label ut as τ , u as z, and ∂u as p. So we get the equation

F̃ (t, x, z, τ, p) = τ + F (t, x, z, p) = 0,

and the system 

ṫ = 1 (so s = t)

ẋ = Fp

ż = τ + Fp · p = Fp · p− F
ṗ = −Fx − Fz · p
τ̇ = −Ft − Fz · τ

In the middle 3 equations, we have no τ terms, so we can discard the last equation. Another
way to think of this is that F̃ = 0, so τ is already given as −F . So we get a smaller system

ẋ = Fp

ż = Fp · p− F
ṗ = −Fx − Fz · p.

The price we pay is the extra F term in the second equation, compared to before.
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Remark 7.1. Solutions are local, near Σ, until characteristics may intersect. There is no
way to continue solutions in general past this intersection of characteristics. For specific
classes of problems, however, there is hope.

Example 7.2. Suppose we have an equation H(x, ∂u) = 0 which does not depend directly
on u. Then we get 

ẋ = Hp

ṗ = −Hx

ż = Hp · p−H.
The first two equations do not depend on z, so we can discard the last equation, solve the
first two equations first, and integrate the last equation at the end.

This type of system is called a Hamilton flow.6 Many PDEs can be interpreted as
Hamiltonian flows. The Hamilton-Jacobi equations are of the form

ut +H(x, ∂u) = 0.

Next time, we will do a bit of variational calculus to not only solve Hamilton-Jacobi equa-
tions but to also see how we may extend a solution past a point where characteristics
intersect. In a Hamilton flow, the characteristics only depend on (x, p). When characteris-
tics intersect, they may have the same x but different p = ∂u. We will try to continue the
solution in a way such that ∂u has a jump discontinuity.

Example 7.3. Consider the equation{
ut + 1

2 |∂xu|
2 = 0

u(0) = u0.

Here, H(p) = 1
2p

2, and we get the system{
ẋ = p

ṗ = 0.

Here, the characteristics are straight lines, with p(0) = ∂xu0.

Example 7.4 (Eikonal equation). The equation

|ut|2 − |∂xu|2 = 0.

is not in the form we have talked about already. This gives

ut = ±|∂xu|,

so we will get 2 solutions.

6Hamilton flows play a role in symplectic geometry.
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8 Expressing Hamilton-Jacobi Equations in Terms of Cal-
culus of Variations

8.1 Recap: Hamilton-Jacobi equations

Last time, we started talking about Hamilton-Jacobi equations, as an example of first order
PDEs: {

ut +H(x,Du) = 0

u(0) = u0

The characteristics for this system were given by
u̇ = Hp(x, p)

ṗ = −Hx(x, p)

ż = Hp(x, p) · p−H(x, p)

with initial data {
x(0) = x0

p(0) = ∂xu0.

The equations for u̇ and ṗ are called the Hamilton equations. We noticed that we only
need to solve them first to get the characteristics, and then we can integrate the ż equation
to solve it after the fact.

8.2 Calculus of variations

Today, we will be looking at the calculus of variations. Here is the setup: We have a
function L(x, q) we call the Lagrangian, and to each function x : [0, T ]→ R, we associate
to this function an action functional

L(x) =

∫ T

0
L(x, ẋ) dt.

The question we want to ask is: what are the minimizers of L? We are looking for

min
x:[0,T ]→R

L(x).

We can think of L giving the cost of the trajectory x. So we want to find the most efficient
trajectory x.

If we were just minimizing a function in Rn, we would look for critical points. In
particular, for f : Rn → R, a minimum point in a critical point if ∇f = 0. How do we do
this in the case of our functional? We can talk in terms of directional derivatives. Replace
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x by x+hy and look at the map h 7→ L(x+hy), where h = 0 is a minimum point. Assume
that our perturbation y is compactly supported. In this case, at h = 0, we have

0 =
d

dh
L(x+ hy)

=
d

dh

∫ T

0
L(x+ hy, ẋ+ hẏ) dt

=

∫ T

0
Lx(x, ẋ) · y + Lq(ẋ) · ẏ dt,

where we are using q as a placeholder for the second variable, as we did with p before.
This holds for all y ∈ C∞0 ([0, T ]). To deal with the ẏ term, we integrate by parts (using
the compact support assumption):

=

∫ T

0
y(Lx(x, ẋ)− d

dt
Lq(x, ẋ)) dt

when integrated against any function with compact support, the part inside the parentheses
gives 0. So it must equal 0, Thus, we have actually proven a theorem:

Theorem 8.1 (Euler-Lagrange equation). x is a critical point for L if and only if it solves

Lx(x, ẋ)− d

dt
Lq(x, ẋ) = 0.

Remark 8.1. The PDE analogue takes a function u : Rn → R and gives the Euler-
Lagrange equation

Lx(u, ∂u)− ∂jLqj (u, ∂u) = 0,

which is a second order PDE.

Remark 8.2. Our perturbation does not change the values at the endpoints x(0), x(T ),
so it gives critical points in a context where x(0) and x(T ) are fixed.
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Remark 8.3. Suppose L = L(ẋ) is the following “double well potential.”

Suppose also that x(0) = x(T ). We want to minimize
∫ T

0 L(ẋ) dt ≥ 0. Can we achieve 0?
We can make a line with slope a and then a line with slope b to get 0 as the minimum
(notice that this is not differentiable!). Alternatively, we can alternate between lines of
slope a and b in any number of ways as follows:

So we get that the infimum is 0 (since we can approximate any piecewise function by
smoothing out the corners), and the minimum is 0 if we allow for any Lipschitz function
x. In fact, all trajectories with slopes between [a, b] are limiting minimizers. This means
we are actually dealing with an effective Lagrangian Leff with the hump between a and
b flattened out. The effective Lagrangian Leff is the convex envelope of L.

If we had another Lagrangian like the following, could we again look at the convex
envelope?
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Suppose we add a linear constant to get L̃(q) = L+c ·q. Then we get the following picture,
which is the same as before:

So the effective Lagrangian must be convex as a function of q. For PDEs, convexity is no
longer required. Instead, we require rank one convexity, which is given by convexity in
one variable at a time.

Example 8.1. Here is an example that comes from classical mechanics. Suppose we have
a particle with trajectory x(t) moving in a conservative force field F = ∇φ, where φ is the
potential. Then we have the Lagrangian

L(x, q) =
1

2
mq2︸ ︷︷ ︸

kinetic energy

− φ(x)︸︷︷︸
potential energy

,

where we have φx = d
dt(mẋ), which we can write as m · ẍ = F (x), which is Newton’s law.

8.3 Connecting the Hamilton-Jacobi equations to the Euler Lagrange
equations

Returning to Hamilton-Jacobi equations, we have x, p with the function H, and we want
to relate this to the x, q = ẋ and L in the Euler-Lagrange equation. We can think of the
Euler-Lagrange equation as a system for x and q via{

ẋ = q
d
dtLq(x, q) = Lx.

We want to let p = Lq(x, q). For this to make sense, we need q 7→ Lq(x, q) to be a
diffeomorphism from Rn → Rn for fixed x.

Proposition 8.1. If L : Rn → R is strictly convex and coercive (meaning limq→∞
L(q)
|q| =

∞), then q 7→ Lq is a diffeomorphism.
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Proof. Injectivity: L is strictly convex, so the graph of L is above its tangent lines at points
of nonintersection:

L(y) > L(x) + (y − x)DL(x), y 6= x.

We can use this to write

(y − x)(DL(y)−DL(x)) > 0, y 6= x.

This gives injectivity.
Surjectivity: We want to minimize L(x, q)−p ·q. If a minimum exists, then the gradient

must equal 0:
Lq(x, q) = p,

which is our surjectivity. Why must the minimum exist? This is because limq→∞ L(x, q)−
p · q =∞ by coercivity.

To check that this is a local diffeomorphism, the differential of q 7→ Lq(x, q) is Lqq ≥ 0.
In fact, by strict convexity, this is > 0.

So we have p = Lq(x, q). We will define H(x, p) = maxq p · q−L(x, q), Note that this is
the same quantity we dealt with in the above proof. The functions p · q−L(x, q) are linear
in p, so this maximum is convex.

Proposition 8.2. H is convex and coercive.

Proof. This comes from the strict convexity and coercivity of L.

Proposition 8.3.
q = Hp(x, p).

Proof. This is a maximum, so H(p) + L(q) − pq ≤ 0, with equality if p = Lq(x, q). Now
fix q and vary p! Then p is a maximum point for this expression when the derivative
Hp(p)− q = 0.

Now let’s change our variables: The Euler-Lagrange equations say

Lx(x, q)− d

dt
Lq(x, q)︸ ︷︷ ︸

p

= 0

So we get {
ṗ = Lx(x, q)

?
= −Hx(x, p)

ẋ = q = Hp(x, p).

We have
H(x, p) + L(x, q)− p · q ≤ 0,
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If we think of p = p(x, q), we can take d
dx to get

Hx(x, p) + Lx(x, q) + (Hp(x, p)− q)︸ ︷︷ ︸
=0

·∂p
∂q

= 0.

So this gives us our relationship between Hx and Lx.
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9 Solutions to Hamilton-Jacobi Equations via Calculus of
Variations

9.1 Recap: Connecting Hamilton-Jacobi equations to calculus of varia-
tions using the Legendre transform

Last time, we wanted to compare Hamilton-Jacobi equations to calculus of variations. The
Hamilton-Jacobi equations are of the form{

ut +H(x, ∂u) = 0 in R× Rn

u(0) = u0 in R.

The characteristics given to this equation are
ẋ = Hp

ṗ = −Hx

ż = p ·Hp −H,

with initial data x(0) = x0 and p(0) = ∂u0. The first two equations are called the Hamil-
ton flow.

In calculus of variations, we have a Lagrangian L : Rn × Rn → R, and we want to
minimize an action functional

min
x∈A

∫ T

0
L(x, ẋ) dt︸ ︷︷ ︸
L(x)

,

where A = {x : [0, T ] → R Lipschitz | x(0) = x0, x(T ) = xT }. Minimizers satisfy the
Euler-Lagrange equation

Lx(x, ẋ)− d

dt
Lq(x, ẋ) = 0.

Last time, we connected these two setups. We saw that

• L is strictly convex and coercive if and only if H is strictly convex and coercive.

•
H(x, p) = max

q∈Rn
−L(x, q) + p · q,

which is maximized at p = Lq(x, q). This relation gives

H(x, p) + L(x, q) ≥ p · q

with equality when p = Lq(x, q). This expression is symmetric in p and q, so it allows
us to cast q in terms of p: q = Hp(x, p). This relationship is known as the Legendre
transform.
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Remark 9.1. The Legendre transform well-defined and is an involution, only assuming
convexity.

Example 9.1. If we remove strict convexity and coercivity, we can get functions which
are not defined everywhere. For example, take{

L(0) = 0

L(q) =∞ q 6= 0.

What is H in this case?

We have not incorporated the initial data of the Hamilton-Jacobi equations into our
calculus of variations. We will do this by adding u0(x0) to the minimization problem (so
when T = 0, we get u0(x0)) and removing the condition x(0) = x0 from our set A. So we
are minimizing

min
x∈A

∫ T

0
L(x, ẋ) dt+ u0(x0) = u(T, xT ),

with A = {x : [0, T ]→ R Lipschitz | x(T ) = xT }.

9.2 Existence of minimizers for the Euler-Lagrange equation

We want to prove the following:

Theorem 9.1. The minimal value function u(T, xT ) in the calculus of variations is the
solution to the Hamilton-Jacobi equations.

First, we should ask: Does a minimum solution to the Euler-Lagrange equation exist?
The answer is yes, as long as L is convex, coercive, and Lipschitz in x and if u0 ∈ Lip.
However, there is no guarantee of uniqueness. We will not prove this, but here is some
intuition:

Here is the trivial case:

Proposition 9.1. Suppose we have a continuous function F : K → R with K compact.
Then minF is attained.

Proof. Let xn be a minimizing sequence: F (xn) → inf F . Then xn → x0 along a subse-
quence. Then F (xn)→ F (x0), so x0 is the minimizer.

What if we try to apply this to calculus of variations? Suppose we have a minimizing
sequence xn : [0, T ] → Rn. Then L(xn) → u(T, xT ) but in what topology? Is xn in a
bounded set? We know that L(xn) is bounded. If L(x, q) = q2, for example, we could

conclude that
∫ T

0 (ẋn)2 ≤ c. Then ẋn is bounded in L2([0, T ]). This would imply that xn
is bounded in C1/2 using Hölder’s inequality: (|xn(t) − xn(s)| ≤ c|t − s|1/2). This implies
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that xn is equicontinuous (and equibounded by the x(T ) = xT assumption). So the Arzelà
Ascoli theorem says that xn → x uniformly. Then

lim
n→∞

L(xn) = lim
n→∞

∫ T

0
L(xn, ẋn) dt+ u(xn,0)︸ ︷︷ ︸

→u0(x0)

We can pass to the limit without a problem for x, but convergence with respect to ẋ is
trouble.

The limit of the integral may not exist, but maybe we can hope for∫ T

0
L(x, ẋ) dt ≤ lim inf

n→∞

∫ T

0
L(xn, ẋn) dt.

This is lower semicontinuity for the map x 7→ L(x). The key observation is that convexity
of L implies lower semicontinuity of L:

Proof. The convexity inequality tells us that

L(ẋn) ≥ L(ẋ) + Lq(ẋ)(ẋn − ẋ).

Integrating gives us ∫ T

0
L(ẋn) dt ≥

∫ T

0
L(ẋ) dt+

∫ T

0
Lq(ẋ)(ẋ− ẋn) dt

We are done if limn→∞
∫
Lq(ẋ)(ẋn − ẋ) = 0. We have replaced our nonlinear dependence

on ẋn − ẋ by a linear property.
Since ẋ ∈ L2, we can approximate Lq(ẋ) by smooth functions. Suppose yk ∈ C∞ with

yk → L(ẋ) in L2. It is enough to see that

lim
n→∞

∫ T

0
yk(ẋn − ẋ) dt = 0

In this context, we can integrate by parts. The integral equals∫ T

0
yk(ẋn − x) dt =

∫ T

0
ẏk(xn − x) dt+ yk(xn − x)|T0

n→∞−−−→ 0

by uniform convergence of xn → x.
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Example 9.2. Recall our double well potential.

In this case, if xn is a wiggle approximating the 0 trajectory, we have L(ẋn) = 0 by
L(ẋ) = L(0) > 0.

Remark 9.2. The Hamilton-Jacobi equation can be solved for a short time using charac-
teristics. In calculus of variations, the analogue turns out to be that minimizers are unique
for a short time.

We want to think of two minimizers in calculus of variations as characteristics that
intersect.

9.3 Proving that Euler-Lagrange equation minimizers solve Hamilton-
Jacobi equations

Here is the “proof” of our theorem.

Proof. Suppose x is a minimizer for the action functional. We can choose a intermediate
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point t, and first minimize relative to the time t.

min
x

∫ T

0
L(x, ẋ) dt+ u0(x0) = min

x

∫ t

0
L(x, ẋ) ds+ u0(x0) +

∫ T

t
L(x, ẋ) ds

If x|[0,T ] is a minimizer, then x|[0,t] is also a minimizer. So

u(xT , x0) = minu(xt, x0) +

∫ T

t
L(x, ẋ) ds.

This is called the dynamic programming principle.7 This principle tells us that for
minimizers,

u(xT , x0) = u(xt, x0) +

∫ T

t
L(x, ẋ) ds,

which we can differentiate with respect to t to get

d

dt
u(xt, x0) = L(x, ẋ)

= p · q −H(x, p)

= p ·Hp −H.

We conclude that u(t, xt) from the calculus of variations is the same as the u(t, xt) from
the Hamilton-Jacobi equation because they solve the same equation with the same initial
data at time 0.

Remark 9.3. This is not an entirely correct proof. How do we know that there is an
optimal trajectory starting at x0? If the time is short enough, we can guarantee a minimizer
starting at x0, but this is exactly the issue of uniqueness of minimizers. This proof can be
made rigorous for short times.

7This is discussed near the end of Evans’ book.
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Remark 9.4. More generally, this is related to control theory, where we try to find

u(x0, T ) = min

∫ T

0
L(x, u) dt+ u0(x(0)), ẋ = h(x, f)

Here, we can choose some weight of influence by changing f , and we are trying to optimize
some cost functional. The function u(x0, T ) solves a Hamilton-Jacobi equation.

We can think of our calculus of variations problem as the case where the ODE for x is
given by ẋ = f .

Remark 9.5. Calculus of variations allows us to obtain meaningful solutions for Hamilton-
Jacobi equations after characteristics begin to intersect. Instead of picking which charac-
teristic to continue, we can just look for a minimizer for a calculus of variations problem
in longer time.
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10 The Hopf-Lax Solution to Hamilton-Jacobi Equations

10.1 The Hamiltonian in classical mechanics

Last time, we were solving the Hamilton-Jacobi equation{
ut +H(x,Du) = 0

u(0) = u0

using the calculus of variations:

u(x, t) = inf
y(t)=x

∫ t

0
L(y(s), ẏ(s)) ds+ u0(y(0)).

Theorem 10.1. The function u solves the Hamilton-Jacobi equation for as long as the
solutions stay smooth.

In the proof, we had the convex duality

H(x, p) = max
q
p · q − L(x, q)

for the Hamiltonian H(x, p) and the Lagrangian L(x, q).

Example 10.1. Here is an example from classical mechanics. Consider the Lagrangian

L(x, q) =
1

2
mq2 − φ(x),

where 1
2mq

2 is kinetic energy and φ(x) is potential energy. Then

H(x, p) = sup
q
p · q − 1

2
mq2 + φ(x)

Complete the square to get

= sup
q

1

2m
p2 − 1

2m
(p−mq)2 + φ(x)

=
1

2m
p2 + φ(x)

In the physical interpretation, the Hamiltonian H(x, p) plays the role of the energy of the
system.
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10.2 The Hopf-Lax formula

Now we will consider a special case, where L = L(q) does not depend on x (and conse-

quently H = H(p)). Assume that L,H are strictly convex and coercive (i.e. limq→∞
L(q)
|q| =

∞). The Euler-Lagrange equation tells us that

����Lx(y, ẏ) +
d

dt
Lq(y, ẏ) = 0.

So we get that Lq(ẏ) is constant. Since Lq is a local diffeomorphism, we get that ẏ is
constant. That is, the solutions to the Euler-Lagrange equation are linear.

We claim that fixing the endpoints y(0), y(t), the minimum is attained for linear tra-
jectories.

Theorem 10.2 (Hopf-Lax formula8). If L = L(q) is convex, then

u(x, t) = inf
y
u0(y) + tL

(
x− y
t

)
.

Proof. Since ∫ t

0
ẏ(s) ds = y(t)− y(0),

we can average to get
1

t

∫ t

0
ẏ(s) ds =

y(t)− y(0)

t
,

where the right hand side is the average velocity for a straight path.

Then ∫ t

0
L(ẏ(s)) ds = t · 1

t

∫ t

0
L(ẏ(s)) ds

8This is from the 50s or the 60s. Professor Tataru was actually able to meet Lax a few times.
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Convexity says that L(x+y
2 ) ≤ 1

2(L(x) + L(y)). More generally, we get that L(hx + (1 −
h)y) ≤ hL(x) + (1 − h)L(y). If we use n variables, this is L(x1+···+xn

n ) ≤ 1
n(L(x1) + · · · +

L(xn)). If we increase the number of variables, this says that L(avg(z)) ≤ avg(L(z(s))),
where we are taking average integrals. This is called Jensen’s inequality, and it gives us

≥ t · L
(
y(t)− y(0)

t

)
In other words, the cost of an arbitrary path is ≥ the cost of the straight path.

We are not done yet. We still need to minimize u0(y(0)) over the choice of y(0).

10.3 Properties of the Hopf-Lax solution

Assume L is convex and coercive. For simplicity, also assume that u0 is bounded. Observe
that if t > 0, then we can restrict q = x−y

t to a compact set. So if u0 is also continuous,
then the infimum is attained.

Proposition 10.1. If u0 ∈ Lip, then u ∈ Lip.

Proof. Here is a proof by picture. Suppose we have points x1, x2, and we want to compare
u(x1) and u(x2). It is enough to consider parallel trajectories with y1, y2.

Take x1 − y1 = x2 − y2. Then y1 − y2 = x1 − x2. We have

u(x1, t) = inf
y1

u0(y1) + tL

(
x1 − y1

t

)
,

u(x2, t) = inf
y2

u0(y2) + tL

(
x2 − y2

t

)
.

Using the Lipschitz condition, |u0(y1)−u0(y2)| ≤ L|y1−y2| = L|x1−x2|. So the conclusion
is that

|u(x1, t)− u(x2, t)| ≤ L|x1 − x2|.
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What if we don’t assume u is Lipschitz? Can we still conclude that u is Lipschitz?

Proposition 10.2. If u0 is continuous, then u(t) is Lipschitz.

Proof. In this case, compare x1 and x2 to the same y:

We have

u(x1) = inf
y
u0(y) + L

(
x1 − y
t

)
,

u(x2) = inf
y
u0(y) + L

(
x2 − y
t

)
.

The difference ∣∣∣∣L(x1 − y
t

)
− L

(
x2 − y
t

)∣∣∣∣ ≤ C · |x1 − x2|
t

,

where the Lipschitz constant C = C(t) in the set where x1−y
t and x2−y

t live.
Where should we look? y−x1

t , y−x2

t cannot be too large. Let x = x1 = x2, and compare
the straight trajectory to an arbitrary trajectory.

The oblique trajectory loses if u0(x)+tL(0) ≤ u0(y)+tL
(x−y

t

)
. This is when 2M

t ≤ L(x−yt ).

So we can restrict to y such that L(x−yt ) ≤ 2M
t . So x−y

t is in a compact set depending on
t. Then the conclusion is that

|u(x1, t)− u(x2, t)| ≤ C(t) · |x1 − x2|
t

,
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where C(t) is the Lipschitz constant for L in the region L(q) ≤ C
t . This Lipschitz constant

goes to ∞ as t→ 0.

In terms of the Hamilton-Jacobi equation, there will be lots of velocities with different
speeds. So there is only an average velocity that survives.

We say that this PDE has a mild regularizing effect.

10.4 Almost everywhere solvability of the Hamilton-Jacobi equation

Recall the following theorem from real analysis (which requires measure theory).

Theorem 10.3. If u is a Lipschitz function, then u is differentiable almost everywhere.

So we get the following conclusion.

Corollary 10.1. The solution u is differentiable almost everywhere.

Proposition 10.3. Let (x, t) be a differentiability point for u. Then the Hamilton-Jacobi
equation holds at (x, t).

Corollary 10.2. The function u solves the Hamilton-Jacobi equation almost everywhere.

Let’s prove the proposition.

Proof. We can think of the Hamilton-Jacobi equation as proving two separate inequalities.
If our trajectory is optimal, then it is optimal if we only look at the trajectory at a shorter
length of time. Look at the optimal trajectory, ending at y and with slope x−y

t .
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Then

u(x, t) = u0(y) + tL

(
x− y
t

)
,

so

u

(
x− hx− y

t
, t− h

)
= u0(y) + (t− h)L

(
x− y
t

)
The first equation tells us that y is the optimal trajectory for (x, t), and the second says
that y is optimal for (x · hx−yt , t− h).

Let q = x−y
t . Then dividing by h gives

u(x, t)− u(x− hq, t− h)

h
= hL(q).

Letting h→ 0 gives
∂xu · q + ∂tu = L(q).

So for this special q we have chosen,

∂tu+ ∂xu · q − L(q) = 0.

We want to think of this in terms of the Legendre transform. Since H(p) = sup p · q−L(q),
the latter half of our equation, ∂xu · q − L(q), is ≤ H(∂xu). So we get

∂tu+H(∂xu) ≥ 0.

Now we want to produce the other inequality. Notice that for the previous inequality,
it was enough to work with a specific value of q, whereas for this direction, we will need to
look at all values of q. Instead of looking at the past of (t, x), look at the future of (t, x).
Our picture looks like

One trajectory from (t+h, x+hz) is to go through x, but this may not be optimal. So

u(t+ h, x+ hz) ≤ u(t, x) + hL(z)︸ ︷︷ ︸
=
∫ t+h
t L(z) ds
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As before, subtract the right hand side, divide by h, and let h→ 0. Then we get

u(t+ h, x+ hz)− u(t, x)

h
≤ L(t) =⇒ ∂u+ ∂xuz ≤ L(z).

So we have proven that for all z,

∂tu+ ∂xu · z ≤ 0.

Taking the supremum over all z, we get

∂tu+H(∂xu) ≤ 0.

Now we will tell a story. The details are in Evans’ book, but the overall story is more
important. We want to ask a question: Does solving the Hamilton-Jacobi equation almost
everywhere suffice to guarantee uniqueness for Hamilton-Jacobi? Equivalently, does this
guarantee that u is the minimal value function? The answer is no.

Are there other interesting properties for the function u? Look at the Hopf-Lax formula

u(x, t) = inf u0(y) + tL

(
x− y
t

)
.

Observe that this is an infimum of functions which are smooth in x. We can compare what
this looks like for different optimal/nonoptimal y:

Since we are taking a minimum, we can see that our curve could have a corner pointing
upwards, but a corner pointing downwards is not possible. This points to a concavity
property of our solution.

Proposition 10.4. u is semiconcave.

Concave means that u(t, x) ≥ u(t,x+y)+u(t,x−y)
2 . Semiconcave means that

u(t, x) ≥ u(t, x+ y) + u(t, x− y)

2
− c · |x− y|2.
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Theorem 10.4. The optimal value function u is the unique semiconcave solution to the
Hamilton-Jacobi equation.

The proof is in Evans, but it is a little hard to follow. There is a better way to do
things! Instead of plugging in u to check whether it satisfies the equation, if we have a
corner, draw a tangent test function ϕ with ϕt +H(∂xφ) ≥ 0 or ϕt +H(∂xφ) ≤ 0.

These are called viscosity solutions for Hamilton-Jacobi equations.
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11 Introduction to Distribution Theory

11.1 Weak solutions to PDEs

For the next month or so, our goal will be to study linear, constant coefficient PDEs

P (∂)u = f, P (∂) =
∑
|α|≤m

cα∂
α.

We will first take a detour to study the theory of distributions. First, some motivation:

Example 11.1. Recall the transport equation{
(∂t +Aj∂j)u = 0

u(0) = u0

with constant coefficients Aj . The characteristics are given by ẋ = A, which gives x(t) =
x(0) + tA. This means that u̇ = 0 along these characteristics, so u(x(t), t) = u(x(0), 0). In
other words,

u(x, t) = u0(x− tA).

Classically, if u0 ∈ C1, then u ∈ C1. What if u0 ∈ C? It doesn’t make sense to say
that the solution u is continuous because we need to take derivatives. If we interpret the
equation as a directional derivative, u0 ∈ C gives a solution. This interpretation relies
strongly on the specific problem. Can we treat this problem in general?

Suppose we have a smooth function ϕ ∈ C∞0 . We can write the equation as the condition∫
Rn+1

(∂t +Aj∂j)uϕdx = 0,

where a function is 0 if it integrates to be 0 against all ϕ ∈ C∞0 . Now integrate by parts
to get

−
∫
Rn+1

u(∂t +Aj∂j)ϕdx = 0, ∀ϕ ∈ C∞0 ,

which applies to all u ∈ C. Our continuous solution will be a solution to this integral
equation.

Definition 11.1. u is a weak solution to a PDE if the corresponding integral equation
holds for all ϕ ∈ C∞0 .

Example 11.2. Recall the Burgers equation

ut + uux = 0, u(0) = u0.
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The characteristics are given by ẋ = u and u̇ = 0. The characteristics will intersect, and
at the point of intersection of characteristics, the solution will start to develop a jump
discontinuity, known as a shock.

In this problem, if we think of the equation as a directional derivative, the derivative along
the characteristics are different when they intersect, so we cannot get a solution. However,
we can similarly look for a weak solution by integrating by parts as before. When we do
this, we want to think of uux as 1

2∂x(u2).

11.2 Topologies on vector spaces

The key idea in the theory of distribution is that we can think of a function u : Rn → R
as a linear map on all ϕ ∈ C0(Rn) via

u(ϕ) :=

∫
Rn
u · ϕdx.

Observe that if u(ϕ) = 0 for all ϕ, then u = 0.
We will use the notation D = C∞0 to refer to the smooth functions with compact

support. Obesrve that D is a linear space. What is the topology of D? Recall that C is a
normed space, with

‖u‖C = sup
x∈Rn

|u(x)|.

Recall:

Definition 11.2. A normed space is a vector space V , with a norm map ‖ · ‖ : V → R
(or C) satisfying

(a) ‖u‖ ≥ 0, with equality iff u = 0.

(b) ‖λu‖ = |λ|‖u‖ for all λ ∈ R (or C).

(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

We obtain a metric space structure, given by d(u, v) = ‖u−v‖. Recall that complete-
ness of a metric space means that every Cauchy sequence is convergent.
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Definition 11.3. A Banach space is a complete normed space.

Here is a special class:

Definition 11.4. A Hilbert space is a vector space with a complete inner product
〈u, v〉 = u · v.

In a Hilbert space, we get a norm by

u · u = ‖u‖2 ≥ 0.

Example 11.3. The L2 space is given by

L2(Rn) =

{
u : Rn → R |

∫
|u|2 dx <∞

}
.

This space is a Hilbert space, given the inner product

u · v =

∫
Rn
uv dx

(with v replaced by v in the complex case).

Hilbert spaces are a special case of Banach spaces, but a single space can have different
norm structures on it.

Example 11.4. We can equip Rn with the norm ‖v‖2 =
∑

j v
2
j which comes from the

usual dot product (a Hilbert space structure). We can also equip Rn with the Lp norm
‖v‖p =

∑
j |vj |p with 1 ≤ p <∞, which gives a Banach space structure.

Example 11.5. Ck is a Banach space with the norm

‖u‖ = sup
|α|≤K

sup
x∈Rn

|∂αu(x)|.

Returning to our objective, what norm can we give C∞(Rn)? We can define

‖u‖α = pα(u) := sup
x∈Rn

|∂αu(x)|.

The problem is that we have infinitely many of these. What would un → u mean in
C∞(Rn)? We want to say that ∂αun → ∂αu uniformly for all α.

The solution is to use all the ‖·‖α as seminorms, which satisfy all the norm conditions
except for ‖u‖ = 0 =⇒ u = 0.

Definition 11.5. Locally convex spaces are vector spaces equipped with a family of
seminorms. A complete, locally convex space is called a Fréchet space.
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In a locally convex space,

pα(u) = 0 ∀α =⇒ u = 0.

Why is this called a “locally convex space”? The idea is that each seminorm gives you
neighborhoods of points, which may not be nested in each other for different seminorms.
But these are all convex neighborhoods, and we can intersect these neighborhoods to get
more convex neighborhoods around every point.

The picture of our function spaces looks like

Hilbert spaces ( Banach spaces ( Fréchet spaces.

Example 11.6. We will use the notation E = {u ∈ Rn → R | u is smooth}. Here, we ask
for nothing at ∞. What does un → u mean in E? We can define this as ∂αun → ∂αu
uniformly on compact sets. For this space, we need to use the collection of seminorms

pα,K(u) = sup
x∈K
|∂αu(x)|, α ∈ Nd,K compact.

We don’t need to check all compact sets; it suffices to take nested balls with radius going
to ∞. With this topology, E is a locally convex space.

For D, we have an issue: if we have a sequence of functions of compact support, the
support may grow to not be compact in the limit. To solve this, there is a notion called
the inductive limit of locally convex spaces, essentially cooked up only to describe D. To
make a long story short, we describe convergence in D as un → u in D if

(a) ∂αun → ∂αu uniformly.

(b) There is a compact set K such that suppun ⊆ K.

Remark 11.1. If u ∈ C(Rn) and ϕ ∈ D, the map ϕ 7→ u(ϕ) =
∫
uϕdx is continuous.

Definition 11.6. The space of distributions, denoted D′ or D∗ is the space of linear,
continuous f : D → R.

This seems to separate us from our original goal. If we have a function, we can get a
distribution, but if we have a distribution, we can’t always get a function back; instead,
we get generalized functions.9

9The term “distribution” comes from the French school, whereas the term “generalized functions” comes
from the Russian school.
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11.3 Examples of distributions

Here are some examples of distributions.

Example 11.7. The Dirac mass at 0 is

δ0(ϕ) = ϕ(0).

Example 11.8. Another distribution is

δ′0(ϕ) = −ϕ′(0).

The reason for the minus sign will become apparent later on. In general, we can define

δ(α)
x (ϕ) = (−1)|α|∂αϕ(x).

The space D′ of distributions is a linear space.10 It has the topology of weak conver-
gence: fn → f in D′ if

fn(ϕ)→ f(ϕ) ∀ϕ ∈ D.

Example 11.9. Can we approximate δ0 with functions? This may shed some light on
what generalized functions look like. Let

un(x) =

{
n/2 x ∈ [−1/n, 1/n]

0 otherwise.

Here,
∫
un = 1 for all n. If we try to take the limit in the sense of distributions, we get (in

1 dimension):

un(ϕ) =

∫
un · ϕ dx

10You should think of the prime as a notion of duality of vector spaces.
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=
n

2

∫ 1/n

−1/n
ϕ(x) dx

=
1

2

∫ 1

−1
ϕ(y/n) dx

n→∞−−−→ ϕ(0),

so un(ϕ)→ δ0(ϕ). That is, un → δ0.

Remark 11.2. In Rn, we could use

uε =
1

εncn
1B(0,ε), cn = |B(0, 1)|.

In n dimensions, this has size ∼ 1/εn.

Remark 11.3. We could also use D functions. If ϕ ∈ D with
∫
ϕ = 1, then we can define

the rescaled function (at scale ε)

ϕε(x) =
1

ε
ϕ(x/ε).

Here is the picture:

By the same argument, ϕε → δ0 in D′.

Next time, we will see how we can think of distributions as solutions to PDEs. This
will require knowing things like how to differentiate distributions.
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12 Operations on Distributions and Homogeneous Distribu-
tions

12.1 Operations on distributions

Last time, we introduced distributions. We had the set D = C∞0 of test functions and
the set D′ of distributions, continuous linear maps F : D → R. If u is a function, we
interpreted it as a distribution via

u(φ) =

∫
uφ dx.

So we can think of distributions as generalized functions. We also saw distributions as a
limit of functions, in this weak sense.

Now, we want to see distributions as solutions to PDEs, so we need to think about
operations with distributions.

12.1.1 Differentiation

We want to define u 7→ ∂ju for distributions. First suppose u is a function. Then ∂ju is a
function with

∂ju(φ) =

∫
∂juφ dx

= −
∫
u · ∂jφdx

= −u(∂jφ).

We can take this as a definition.

Definition 12.1. If u ∈ D′, define ∂ju by ∂ju(φ) = −u(∂jφ).

Remark 12.1. If u ∈ C1, then u is the same classically and as a distribution.

Example 12.1. Consider the Heaviside function

H(x) =

{
0 x < 0

1 x > 0.

in 1 dimension. Then ∂xH = 0 away from 0, in the classical sense. We can check that

∂xH(φ) = −H(∂xφ)

= −
∫
H(x)∂xφdx
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= −
∫ ∞

0
∂xφ(x) dx

= −φ|∞0
= φ(0)

= δ0(φ),

so ∂xH = δ0 as a distribution. The idea is that when we have a jump discontinuity,
differentiating gives us a Dirac mass.

Example 12.2. What is the derivative of the Dirac mass?

∂xδ0(φ) = −δ0(∂xφ)

= −∂xφ(0)

= δ′0(0).

So the derivative of δ0 is what we previously called δ′0. Similarly, we can have ∂αδ0 = δ
(α)
0

for a multi-index α.

12.1.2 Multiplication by smooth functions

Suppose ψ ∈ E and u is a function. Then ψu is a function. What if u ∈ D′? If u is a
function, then

ψu(φ) =

∫
ψuφdx

=

∫
u ψφ︸︷︷︸
∈D

dx

= u(ψφ).

We can again take this as a definition.

Definition 12.2. If u ∈ D′ and ψ ∈ E , define ψu by ψu(φ) = u(ψφ).

The Leibniz rule for derivatives says

∂(ψu) = ∂ψ · u+ ψ · ∂u.

Using these definitions, this rule also holds for u ∈ D′ and ψ ∈ E .
If we have the equation P (x, ∂)u = f with P (x, ∂) =

∑
cα(x)∂α, then all these opera-

tions are well-defined for distributions, so we can think of distribution solutions to PDEs.
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12.2 The support of a distribution

Recall that if u is a function, its support is the largest closed set “where u is nonzero.”
In particular,

x0 /∈ suppu ⇐⇒ u = 0 in B(x0, r) for some r > 0.

Definition 12.3. If u ∈ D′, its support is the closed set defined by

x0 /∈ suppu ⇐⇒ u(φ) = 0 for all φ ∈ D with suppφ ⊆ B(x0, r)

Example 12.3. The support of the Dirac mass is supp δ0 = {0}: If x0 6= 0, then there is
a ball B(x0, r) /∈ 0. Then if we let φ ∈ D have suppφ ⊆ B(x0, r), then δ0(φ) = φ(0) = 0.

Let E ′ denote the compactly supported distributions.

Proposition 12.1. If f ∈ E ′, then f extends “naturally” to a continuous linear function
on E.

Proof. We know f(φ) when φ ∈ D. Because supp f ⊆ B(0, R), f(φ) = 0 if φ is supported
outside B(0, R). We can truncate φ outside B as follows: Replace φ by χφ, where χ is a
cutoff function with compact support, suppχ ⊆ B(0, 2R), and χ = 1 in B(0, R). Then

f(φ) = f(χφ) + f((1− χ)φ)

= f(χφ).

So for φ ∈ E , define f(φ) := f(χφ).

We have the following picture:

D D′

E E ′

dual

⊆

dual

⊆

We will extend this picture later when we learn about the Fourier transform.

12.3 Homogeneous distributions

Example 12.4. The polynomial f(x) = xn is a homogeneous polynomial. We can express
this homogeneity by

f(λx) = λnf(x),

where n is the homogeneity index.
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Example 12.5. The homogeneity index does not have to be an integer. If we have f(x) =
|x|α, then

f(λx) = λαf(x)

for λ > 0. If α is not an integer, this is not smooth at 0. Is |x|α a distribution? This is
related to the question of whether |x|α is integrable (away from infinity). In 1 dimension,∫
|x|α dx exists if α > −1. In n dimensions, we can use polar coordinates:∫

|x|α dx = cn

∫
rαrn−1 dr,

where cn is the volume of the unit ball in n-dimensions. Here, we need α + n − 1 > −1,
i.e. α > −n. So 1

|x|n is borderline.

Example 12.6. The Heaviside function is homogeneous of index 0:

H(λx) = λ0H(x)

for λ > 0.

Example 12.7. In 2 dimensions (expressed in polar coordinates (r, θ)), the function

f(x) = rαg(θ)

is homogeneous of index α.

For functions, the homogeneity condition f(λx) = λαf(x) has a distributional inter-
pretation: ∫

f(λx)φ(x) dx = λα
∫
f(x)φ(x) dx

Applying a change of variables on the left,∫
f(y)φ(y/λ)

1

λn
dy = λα

∫
f(x)φ(x) dx.

Denoting φλ(x) = λ−nφ(x/λ), we get the relation

f(φλ) = λαf(φ),

which is meaningful for distributions.

Definition 12.4. A distribution f ∈ D′ is homogeneous of order α if

f(φλ) = λαf(φ)

for φ ∈ D.
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Example 12.8. Can we think of the Dirac mass δ0 as a homogeneous distribution?

δ0(φλ) = φλ(0) = λ−nφ(0) = λ−nδ0(φ),

so δ0 has homogeneity −n.

In calculus, we have ∂xx
n = nxn−1. That is, we differentiate something which is

homogeneous of order n and get something which is homogeneous of order n− 1.

Proposition 12.2. If f ∈ D′ is homogeneous of order α, then ∂xf is homogeneous of
order α− 1.

Proof. The chain rule works for functions, so it also works using the definition for distri-
butions by passing the derivative to the test function.

Example 12.9. The Heaviside function is homogeneous of order 0, and ∂xH = δ0 is
homogeneous of order −1. Similarly, ∂xδ0 = δ′0 is homogeneous of order −1.

In 1 dimension, we want to classify homogeneous distributions. Start with functions
and α > −1. We need to assign f(−1) and f(1), so this is a linear space of dimension 2.
Here is a basis:

xα+ =

{
0 x < 0

xα x > 0,
xα− =

{
|x|α x < 0

0 x > 0.

Then |x|α = xα+ + xα−, and

∂xx
α
+ = αxα−1

+ , ∂xx
α
− = −αxα−1

− .

Now look at when α ∈ (−2,−1). We can define

∂xx
α+1
+ := (α+ 1)xα+.

If we repeat this, we can get homogeneous distributions to all noninteger negative αs.
What about α = −1? We have δ0. At order 0, we have 2 homogeneous distributions:

H and the constant 1 function. But differentiating these gives δ0 and 0, which do not have
a 2 dimensional span. Other candidates are 1

|x| or 1
x . We can look at the integrals∫

1

|x|
φ(x) dx

∫
1

x
φ(x) dx.

On the left, there may be no cancelation at 0, but we may be able to get some cancelation
at 0 for the right integral. We may try to define∫

R

1

x
φ(x) dx := lim

ε→0

∫
R\[−ε,ε]

1

x
φ(x) dx.
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Does this limit exist? We can look at∫
[−1,1]\[−ε,ε]

1

x
φ(x) dx =

∫ −ε
−1

1

x
φ(x) dx+

∫ 1

ε

1

x
φ(x) dx

Use the change of variables y = −x on the left integral to get

=

∫ 1

ε

φ(x)− φ(−x)

x
dx.

φ(x)− φ(−x) is o(x), so this converges.
Thus, we can define the principal value PV 1

x by

PV
1

x
(φ) = lim

ε→0

∫
R\[−ε,ε]

φ(x)

x
dx,

which is homogeneous of order −1.
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13 Homogeneous Distributions of Order −1, Convolution,
and Fundamental Solutions

13.1 Special homogeneous distributions of order −1

13.1.1 The principal value of 1/x as a complex limit

Last time, we were discussing homogeneous distributions. When classifying homogeneous
distributions of order -1 in 1 dimension, we saw two interesting distributions:

δ0, PV
1

x
.

If you like complex analysis, you can consider the function

f(z) =
1

z
=

1

x+ iy
.

Then f(z) = 1
x−iε on the line L−ε below the real line:

What is limε→0
1

x−iε? Apply this to a test function:

1

x− iε
(ϕ) =

∫
ϕ(x)

x− iε
dx

≈
∫
R\[ε,ε)

ϕ(x)

x− iε
+

∫
1
2
Cε

ϕ(z)

z
dz

≈ PV
1

x
(ϕ) + ϕ(0) ·

∫
1
2
Cε

1

z
dz

Write ln z = ln |z|+ i arg z. Then z = εeiθ for θ ∈ [π, 2π]

= PV
1

x
(ϕ) + ϕ(0) ·

∫ 2π

π

iεeiθ

εeiθ
dθ

= PV
1

x
(ϕ) + ϕ(0)πi.

So

lim
ε→0

1

x− iε
= PV

1

x
+ πiδ0.
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If we do the same approximation from the line Lε above the real line, we get

lim
ε→0

1

x+ iε
= PV

1

x
− πiδ0.

What is ∂x PV 1
x? We can calculate that

− lim
ε→0

1

(x− iε)
=

(
PV

1

x

)′
+ πiδ′0,

and repeat this idea to find the derivatives of PV 1
x .

13.1.2 1/|x| as a distribution

What is 1
|x| as a distribution?

lim
ε→0

∫
[−1,1]\[−ε,ε)

1

|x|
ϕ(x) dx =

∫
1

|x|
(ϕ(x)− ϕ(0)) dx+ ϕ(0)

∫
1

|x|
dx

→
∫ 1

−1

1

|x|
(ϕ(x)− ϕ(0)) dx+ 2ϕ(0)| log ε|.

But this does not converge as ε → 0. So we can try to renormalize, calculating the
integral when we subtract out the divergent term:

1

|x|
(ϕ) := lim

ε→0

∫
R\[−ε,ε]

1

|x|
(ϕ(x)− ϕ(0)) dx− 2ϕ(0)| log ε|

However, this breaks the homogeneity.

13.2 Properties of convolution

Definition 13.1. Let ϕ,ψ ∈ D. The convolution is the function

(ϕ ∗ ψ)(x) =

∫
ϕ(y)ψ(x− y) dy.

Observe that this is smooth in x. What about the support?

Proposition 13.1.
suppϕ ∗ ψ ⊆ suppϕ+ suppψ

Proof. If we want to know the support, call K = suppϕ and K1 = suppψ. If (ϕ∗ψ)(x) 6= 0,
then we must have x ∈ K +K1.
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So we can think about convolution as a function

∗ : D ×D → D.

Proposition 13.2 (commutativity of convolution).

ϕ ∗ ψ = ψ ∗ ϕ.

Proof. Make the change of variables z = x− y in the integral.

Proposition 13.3 (associativity of convolution).

ϕ ∗ (ψ ∗ ζ) = (ϕ ∗ ψ) ∗ ζ.

So (D,+, ∗) is a commutative algebra. We have another commutative algebra structure
on D, (D,+, ·). We will later see that these structures are not unrelated; they are mirror
images of each other.

With multiplication, we have the Leibniz rule:

∂(ψϕ) = ∂ψ · ϕ+ ψ · ∂ϕ.

We don’t exactly have a Leibniz rule for convolution:

Proposition 13.4.
∂(ψ ∗ ϕ) = ψ ∗ ∂ϕ = ϕ ∗ ∂ψ.

Proposition 13.5. If ϕ ∈ L1 and ψ ∈ L∞, then

‖ϕ ∗ ψ‖L∞ ≤ ‖ϕ‖L1‖ψ‖L∞ .

Proof.

|(ϕ ∗ ψ)(x)| ≤
∫
|ϕ| · sup |ψ|

= ‖ϕ‖L1‖ψ‖L∞ .

When you think of convolution, you want to think of two things: regularity and support.
If ϕ ∈ D and ψ ∈ E , then we lose information about the support, so ϕ∗ψ ∈ E . So D∗E → E .
On the other hand, if we take a derivative of the convolution, we just need to be able to
take a derivative of one of the factors. Here is the takeaway:

• For the support of the convolution, we need the support of both factors.

• For regularity, we need the regularity of just one factor!
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We can think of convolutions as distributions: If ϕ ∈ E and ψ ∈ D,

ϕ ∗ ψ(x) = ϕ(ψ(x− ·)).

This right hand side is well-defined even if ϕ ∈ D′. So we see that

D′ ∗ D → E .

Similarly, we have
E ′ ∗ D → D.

What about E ′ ∗ E ′? If u, v, ϕ ∈ D, then

(u ∗ v)(ϕ) =

∫∫
u(y)v(x− y) dyϕ(x) dx

Change variables using z = x− y so ϕ(x) = ϕ(z + y).

=

∫∫
u(y)v(z)ϕ(z + y) dy dz

=

∫
u(y)

∫
v(z)ϕ(z + y) dz︸ ︷︷ ︸

v(ϕ(y+·))

dy

= u(v(ϕ(y + ·))).

This conclusion makes sense even if u, v ∈ E ′. We can make this precise if we can approxi-
mate elements of E ′ by elements in E . So we get

E ′ ∗ E ′ → E ′.

However, D′ ∗ D′ is undefined.

13.3 Fundamental solutions to PDEs

Now suppose we have the PDE
P (∂)u = f,

where P is linear with constant coefficients and f is a distribution. The simplest f we can
consider is δ0, which gives us the equation

P (∂)K = δ0

The next simplest f we can consider is δx0 . So we get

P (∂)K(· − x0) = δx0

by invariance with respect to translations.
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Can we write a general function as a superposition of δ functions? If we have a Riemann
integral, we can approximate it by a sum of pieces which look like Dirac masses.

So can we make sense of something that looks like

f =

∫
f(x0)δx0 dx0?

We can define this by applying f to a test function:

ϕ(ϕ) =

∫
f(x0) δx0(ϕ)︸ ︷︷ ︸

=ϕ(x0)

dx0.

So if we can deal with a Dirac masses, we can deal with a lienar combination of Dirac
masses and hence any function as a superposition of Dirac masses. So the solution should
looks like

u(x) =

∫
f(x0)K(x− x0) dx0.

This was some intuition11, but here are some definitions.

Definition 13.2. K is a fundamental solution of P (∂) if

P (∂)K = δ0.

Proposition 13.6. The function u = K ∗ f solves the equation

P (∂)u = f.

Proof.

P (∂)u = P (∂)(K ∗ f)

= P (∂K) ∗ f
= δ0 ∗ f.

We are done if f ∗ δ0 = f . If f ∈ D, then

f ∗ δ0(x) = δ0(f(x− ·)) = f(x).

The same works for f ∈ D′.
11Or maybe confusion!
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In this proof, we saw that δ0 is the identity with respect to *. For multiplication, 1 is the
identity. The constant 1 function has support on all of Rn, but it has regularity; conversely,
δ0 has 1 point as it support but no regularity. You can think of these as opposites.

Example 13.1. With our notation, the fundamental theorem of calculus looks like this:

Theorem 13.1. If ∂xu = f in R, then

u =

∫
f(x) dx+ C.

If we specify that u(−∞) = 0, then

u(x) =

∫ x

−∞
f(y) dy.

We want to interpret this as a convolution. First, let’s compute the fundamental
solution:

∂xK = δ0, K(−∞) = 0.

This tells us that
K = H(x)

is the Heaviside function. By our proposition, u = K ∗ f . We can write this as

u(x) =

∫
H(x− y)f(y) dy

For H(x− y) to give 1 and not 0, we need x− y > 0.

=

∫ x

−∞
f(y) dy.

Is the fundamental solution K unique? In general, if K is a constant solution, then
K + C is a fundamental solution for any constant C. If we ask for K = 0 at −∞, we get
K = H. But if we ask for K = 0 at +∞, we get K = H − 1. If we ask for K to be odd,
we get K = H − 1/2.
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14 Fundamental Solutions for PDEs in 2 Dimensions and for
the Laplacian

14.1 Fundamental solutions in 1 and 2 dimensions

Last time, we discussed fundamental solutions for partial differential equations. Suppose
we have a differential operator in 1 dimension

P (∂)K = δ0.

Solve the homogeneous equation and look for the fundamental solution

K(x) =

{
uhom

1 (x) x < 0

uhom
2 (x) x > 0.

Plug this in into P (∂)K = δ0 and get a linear system for the constants. As an exercise,
try to solve the equation with the operator P (∂) = ∂2 − 1.12

What about in 2 dimensions? In complex analysis, one way to specify whether a
function is holomorphic is via the Cauchy-Riemann equations. If our coordinates are (x, y),
then let z = x+ iy.

Definition 14.1. A function f : R2 → C is holomorphic if

(∂x + i∂y)f = 0.

If we write f = u + iv, we can express this as equations for the real and imaginary
parts: {

∂xu− ∂yv = 0

∂yu+ ∂xv = 0.

These are the Cauchy-Riemann equations. From the perspective of PDEs, this is just
one equation.

Denote the operator
∂ = ∂x + i∂y.

Sometimes people will use this notation to denote 1/2 this quantity. Complex differentia-
tion is given by the operator

∂ = ∂x − i∂y.

Our goal is to find the fundamental solution for ∂.
Looking at ∂K = δ0, notice that δ0 is homogeneous of order −2 and ∂ reduces order of

homogeneity by 1. So we should look for a K which is homogeneous of order −1. Away

12Last week, this was a midterm question for Professor Tataru’s undergraduate class.

77



from z = 0, ∂K = 0, so K is holomorphic. So we should look for K of the form K = c
z ,

where c is a constant. This is locally integrable, unlike in 1 dimension. So we can define

K(φ) = c

∫
R2

φ(z)

z
dx dy,

where we can use dz dz instead of dx dy. If K is a fundamental solution, ∂K = δ0, so
∂K(φ) = φ(0), which gives K(−∂φ) = φ(0). Here,

K(−∂φ) = −c
∫∫

R2

(∂x + i∂y)φ(z)

z
dx dy

= lim
ε→0
−c
∫∫

R2\Bε
(∂x + i∂y)φ ·

1

z
dx dy

We want to use integration by parts. Using Green’s theorem,

= lim
ε→0

c

∫∫
R2\Bε

φ · (∂x + i∂y)
1

z︸ ︷︷ ︸
=0

dx dy − c
∫
∂Bε

(νx + iνy)φ ·
1

z
ds,

where ν is the inner normal vector to the boundary of Bε. In particular, ν = − (x,y)
|z| .

= lim
ε→0

c

∫
∂Bε

z

|z|
φ · 1

z
ds

= lim
ε→0

c

ε

∫
∂Bε

φ(z) dz

= 2πcφ(0).

We want 2πc = 1, so we should pick c = 1
2π . Thus, our fundamental solution is

K(z) =
1

2πz
.

Remark 14.1. We can rewrite this line integral in a complex fashion, as∫
φ(z)

z
dz = 2πiφ(0),

by the residue theorem. So we have recovered the residue theorem. In essence, the residue
theorem is the analogue of the fundamental theorem of calculus for 2 dimensions.

14.2 Fundamental solution for the Laplacian

Our next exercise is to find the fundamental solution to P (∂) = −∆, where

∆ = ∂2
1 + · · ·+ ∂2

n.
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Since δ0 is homogeneous of order −n, and P (∂) will decrease the order of homogeneity by
2, K should be homogeneous of order 2 − n. To look for a candidate for a solution, we
should look at the symmetries of ∆, in particular invariance with respect to rotations.

If y = Ax is a linear change of variables, then ∂
∂xi

= Ai,j
∂
∂yj

. Then ∆ = Ai,jAi,k
∂
∂yj

∂
∂yk

.

Here, we are using Einstein summation notation, in which the sum is implicit but unwritten.
Do we get back ∆ in y? The answer is yes, if

Ai,jAi,k = In ⇐⇒ A>A = I.

That is, we want A to be orthogonal. Recall that if A is orthogonal,

‖Ax‖2 = 〈Ax,Ax〉
= 〈x,A>Ax〉
= 〈x, x〉
= ‖x‖2.

So we can look for K which is invariant with respect to rigid rotations, i.e. K is a spherically
symmetric distribution.

Remark 14.2. We must be careful with this line of reasoning. We are just hoping that
there exists some fundamental solution with this property. Not all fundamental solutions
will have this property. For example, if we add x1 to K, we will still have a fundamental
solution, but it will not be radial.

We will guess

K = cn ·
1

|x|n−2
,

where we will set the case n = 2 dimensions aside for now. Observe that

−∆K = δ0 ⇐⇒ −∆K(φ) = φ(0)

⇐⇒ K(−∆φ) = φ(0)

⇐⇒
∫
Rn
−∆φ

1

|x|n−2
dx = φ(0).

As before, write this integral as

lim
ε→0

∫
Rn\Bε

−∆φ · 1

|x|n−2
.

We want to integrate by parts. Here is Green’s theorem in this setting:

Theorem 14.1 (Green’s theorem for the Laplacian).∫
Ω

∆u · v − u ·∆v dx =

∫
∂Ω

∂u

∂ν
v − u∂v

∂ν
dσ.
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Proof. ∫
Ω

∆u · v dx =

∫
Ω
∂j∂ju · v

= −
∫

Ω
∂ju · ∂jv dx+

∫
∂Ω
νj∂ju · v dσ,

where σ is surface measure on ∂Ω. Observe (for the future) that ∂ju · ∂jv = ∇u ·∇v in the
first term and νj∂ju = ν · ∇u := ∂u

∂ν is the normal derivative in the second term.

=

∫
Ω
u · ∂j∂j︸︷︷︸

∆

v +

∫
∂Ω

∂u

∂ν
v − u∂v

∂ν
dσ.

Returning to our computation, we want

φ(0) = lim
ε→0

∫
Rn\Bε

φ

(
−∆

1

|x|n−2

)
dx−

∫
∂Bε

∂φ

∂ν
· 1

|x|n−2
− φ ∂

∂ν

1

|x|n−2
dσ

The first integral goes away because −∆ 1
|x|n−2 = 0. We can see this via a formula for

the Laplacian on radial functions: ∆F (r) = (∂2
r + n−1

r ∂r)F (r). This is the chain rule,
switching to polar coordinates in n dimensions.

The second integral is ∫
∂Bε

∂φ

∂ν
· 1

|x|n−2
dA = O(ε)→ 0,

as ∂φ
∂ν is bounded, 1

|x|n−2 = ε2−n, and dA has order εn−1.

The third integral is∫
∂Bε

φ · ∂
∂ν

1

|x|n−2
dν =

∫
∂Bε

φ · (n− 2)
1

|x|n−1
dσ

≈ φ(0) · n− 2

εn−1
εn−1an,

where an is the area of the unit sphere.

= (n− 2)anφ(0).

So we need

c = cn =
1

(n− 2)an
.

Theorem 14.2. If n ≥ 3, then the fundamental solution for −∆ is

K(x) =
1

(n− 2)an
· 1

|x|n−2
,

where an is the area of the unit sphere.
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Returning to the 2 dimensional case, we want K = K(r), and outside K = 0, we want

(∂2
r +

1

r
∂r)K = 0.

We can write this as

(∂r +
1

r
) (∂rK)︸ ︷︷ ︸

L

= 0.

This tells us that
L′

L
= −1

r
,

so
logL = − log r + c,

which we can write as

L = c · 1

r
.

Substituting back in for K, we have ∂rK = c
r , which tells us that

K = c ln r + d,

where d is a constant that we can choose to fit our problem.
What is the constant c? Instead of a computation, we’ll do some carefully selected

handwaving. Note that
∂

∂ν
log r = −1

r
,

so there is no n − 2. We get the last line of the higher-dimensional computation, but
without the n− 2:

c =
1

a2
=

1

2π
.

So

K(x) =
1

2π
ln r,

where we can add a constant if we wish.

Remark 14.3. If we think of the Laplacian in 2 dimensions as ∆ = ∂∂, then the funda-
mental solutions follow

K−∆ = K∂ ∗K∂ =
1

z
∗ 1

z
.

We get a divergent integral, but with a proper renormalization, we can make sense of this.
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15 Introduction to the Fourier Transform

15.1 Motivation: diagonalization for differential operators

We would like to have a better way to think about fundamental solutions to PDEs. Here
is an analogy for the Fourier transform. Suppsoe we have a symmetric matrix in Rn.
Then A is diagonalizable, with orthonormal eigenvectors u1, . . . , un. If you want to better
represent your matrix, you can change coordinates to this basis, or you can express an
arbitrary vector with u = c1u1 + · · · cnun, where cj = u · uj . If you have two (or a family
of) commuting matrices, you can find an orthonormal basis of eigenvectors for both (or
all) matrices simultaneously.

If we have PDEs with constant coefficients, then the operators P (∂), Q(∂), . . . are all
commuting operators. Can we find a common eigenbasis of functions? Here are some
candidates for eigenfunctions eix·ξ, where the i is there to make sure that these don’t blow
up at ∞. Then

P (∂)eix·ξ = P (iξ)eix·ξ,

so these exponentials naively serve as eigenfunctions for these operators with eigenvalues
P (iξ). Here, we don’t always have real eigenvalues, but we have complex eigenvalues.

Here are some issues:

• Are these functions orthogonal? Consider the Hilbert space L2(Rn) = {u : Rn → R |∫
Rn |u|

2 dx < ∞. If we consider the L2(Rn) inner product, u · v =
∫
Rn u(x)v(x) dx

(with v replaced by v for complex functions), are these orthonormal? In fact, eix·ξ /∈
L2, so we cannot properly analyze∫

Rn
eix·ξ1e−ixξ2 dx.

• For our diagonaiization, we have uncountably many eigenvectors. L2(Rn) is a sep-
arable Hilbert space with a countable orthonormal basis. So we have too many
functions.

However, we can think of eix·ξ as generalized eigenfunctions. We can still ask the
question: Given f ∈ L2(Rn), can we write it as a superposition as eix·ξ? That is, can we
write

f(x) =

∫
eix·ξc(ξ) dξ?

If we disregard the above issues, can we still recover an identity like cj = u · uj as before?
We may want to try

c(ξ) =

∫
f(x)e−ixξ dx.

But since we have trouble normalizing the eigenfunctions, should there be a normalization
constant in front?

82



If we can achieve such a representation, then we get a lot out of it:

P (∂)f =

∫
eix·ξc(ξ)P (iξ) dξ.

So the map f 7→ P (∂)f just acts diagonally on this basis: c(ξ) 7→ P (iξ) · c(ξ).

15.2 Properties of the Fourier transform

We will use the notation Dj = 1
i ∂j , so that Dje

ix·ξ = ξje
ix·ξ. So we will think of P (D)

instead of P (∂). In this notation, P (D)eix·ξ = P (ξ)eix·ξ, and we call P (ξ) the symbol of
P .

Example 15.1. If P (x,D) =
∑

α cα(x)Dα, then the symbol is P (x, ξ) =
∑

α cα(x)ξα.

Definition 15.1. The Fourier transform of a function f is

(Ff)(ξ) = f̂(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξf(x) dx.

Our goal is to show that

f(x) =
1

(2π)n/2

∫
Rn
eix·ξ f̂(ξ) dξ.

For what f is f̂ well-defined? The integral is absolutely convergent if f ∈ L1, i.e.
∫
|f | <∞.

We will not use L1 functions much in our context. If we have f ∈ L1, then

|f̂(ξ)| ≤ 1

(2π)n/2
‖f‖L1 ,

which we can write as

‖f̂‖L∞ ≤
1

(2pi)n/2
‖f‖L1 .

The problem is that we want to be able to undo the Fourier transform, and for L∞ functions,
the Fourier transform is not well-defined.

What about the Fourier transform on test functions? If f ∈ D, then f̂ ∈ E , so there
is no compact support. But if we have f ∈ E , then f̂ does not exist, since the integral
may not converge. It seems that D is too small, and E is too large. What should be our
intermediate space where F acts? We will use the Schwartz space S.13 For u ∈ S, we want
the derivatives to not only be bounded but have decay at infinity.

13This is not the same as Schwarz from the Cauchy-Schwarz inequality. Professor Tataru got to meet
Schwartz once.
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Definition 15.2. The Schwartz space is the space of C∞(Rn) functions which are
rapidly decreasing, in the sense that

|xα∂βu| ≤ cα,β

for all α, β ∈ Nn.

The Schwartz space S is a locally convex space with seminorms

pα,β(u) = ‖xα∂βu‖L∞ .

Theorem 15.1. The Fourier transform is F : S → S, and the inverse F−1 : S → S.

We have not proven that (F−1f)(ξ) = 1
(2π)n/2

∫
Rn e

ix·ξ f̂ dx gives the inverse, but we will

call it the inverse for now. How do we prove this theorem?
Observe that in the expression xα∂β, the order of xα and ∂β does not matter. How do

∂, x interact with the Fourier transform?

Proposition 15.1. For f ∈ S, ∂j f̂ = −ix̂jf .

Proof.

∂j f̂(ξ) =
1

(2π)n/2

∫
e−ix·ξf(x)(−ixj) dx

= −ix̂jf.

Proposition 15.2. For f ∈ S, ξf̂ = −i∂̂xf .

Proof.

ξj f̂(ξ) =
1

(2π)n/2

∫
e−ix·ξf(x)ξj dx

Use integration by parts.

=
1

(2π)n/2

∫
i
∂

∂xj
(e−ix·ξ)f(x) dx

=
1

(2π)n/2

∫
−i(e−ix·ξ)f(x) dx.

So multiplication by x on the physical side is differentiation on the Fourier side, and
multiplication by ξ on the Fourier side is differentiation on the physical side.

Proof. If f ∈ S, then (using β = 0 and |α| ≤ N for N > n)

|f(x)| ≤ cN
(1 + |x|)N

∈ L1.
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So ‖f̂‖L∞ ≤ c‖f‖L1 .
Together, our propositions give us

ξα∂βξ f̂ = (−i)|α|+|β|∂̂αxxβf.

Here, we have
‖fα∂βξ f̂‖L∞ ≤ ‖∂

α
xx

βf‖L1 .

If f ∈ S, then ∂αxx
βf ∈ S ⊆ L1. So the right hand side is finite, controlled by finitely many

of our Schwartz seminorms.

Example 15.2 (Fourier transform of a Gaussian). Suppose f(x) = e−x
2/2. What is f̂?

f̂(ξ) =
1

(2π)n/2
e−x

2/2e−ixξ dx

=
1

(2π)n/2
e−ξ

2/2

∫
e−(x+iξ)2/2 dx

How do we deal with this integral? If we write z = x = iξ, we are doing a complex integral
on the curve Γξ:

So we get

f̂(ξ) =
1

(2π)n/2

∫
Γξ

e−z
2/2 dz

= e−ξ
2/2 1

(2π)n/2

∫
Γ0

e−z
2/2 dz

= e−ξ
2/2 1

(2π)n/2

∫
Rn
e−x

2/2 dx

We can recall
∫
e−x

2
dx =

√
π, so a change of variables gives

= e−ξ
2/2.

So we have seen that
F(e−x

2/2) = e−ξ
2/2.
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In general, what is F(e−λx
2/2)? Here is how the Fourier transform behaves under

scaling:

Proposition 15.3. For f ∈ S,

f̂(µ·) =
1

µn
f̂(·/µ).

Proof.

Ff(µx) =

∫
e−ix·ξf(µx) dx

Make the change of variables y = µx.

=
1

µn

∫
e−iy·ξ/µf(y) dy

=
1

µn
f̂(ξ/µ).

Remark 15.1. You might call f(µx) an L∞ scaling, whereas 1
µn f̂(ξ/µ) is an L1 scaling.

Example 15.3. Setting µ =
√
λ,

F(e−λx
2/2) =

1

λn/2
e−ξ

2/(2λ).

We will work towards the following Fourier inversion theorem:

Theorem 15.2. F−1F = FF−1 = I in S.

Remark 15.2. You can think of FF−1 as the complex conjugate of F−1F .
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16 Fourier Inversion, Plancherel’s Theorem, and Temperate
Distributions

16.1 Fourier inversion

Last time, we introduced the Fourier transform

Fu(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξu(x) dx.

We had an “inverse”

F−1v(x) =
1

(2π)1/2

∫
Rn
eix·ξv(ξ) dξ.

Both F and F ′ are functions from S → S, where S = {ϕ : |xα∂βϕ| ≤ cα,β} is the Schwartz
space.

Theorem 16.1. F−1F = Id on S.

Proof. Let’s first try a brute-force approach and see what happens.

F−1Fu =
1

(2π)n/2

∫
Rn
eix·ξû(ξ) dξ

=
1

(2π)n

∫
Rn
eix·ξ

∫
Rn
e−iξ·yu(y) dy dξ

?
=

1

(2π)n

∫∫
ei(x−y)·ξ dξ dy

We know û has rapid decay, so the first integral is well-defined. But it is not clear how we
can integrate here. The dξ integral should evaluate to be δx=y in some way. Here is what
we actually do:

= lim
ε→0

1

(2π)n

∫
Rn
eix·ξe−

ε
2
ξ2

∫
Rn
u(y) dy

Now we can legitimately apply Fubini’s theorem.

= lim
ε→0

1

(2π)n

∫∫
u(y)ei(x−y)·ξe−

ε
2
ξ2
dξ dy

= lim
ε→0

∫
u(y)e−

(x−y)2

2ε ε−n/2 dy

= lim
ε→0

∫
u ∗ ϕε

= u,

where

ϕε(y) =
1

(2π)n
e−

y2

2ε
1

εn/2
ε→0−−−→ δ0.
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16.2 Isometry properties of F on L2

Now let’s shift our attention to L2, with inner product 〈u, v〉 =
∫
uv dx.

Proposition 16.1. The Fourier transform is unitary on L2. That is,

F∗ = F−1, (F−1)∗ = F .

Proof.

〈F , uv〉 =

∫∫
e−ixξu(x) dx v(ξ) dξ

=

∫∫
e−ix·ξv(ξ) dξ u(x) dx

=

∫∫
eixξv(ξ) dξ u(x) dx

= 〈u,F−1v〉.

This has the following consequence:

Theorem 16.2. F : S → S is an L2-isometry.

Proof. If we set u = v, we get

‖u‖2L2 =

∫
|u|2 dx = ‖Fu‖2L2 .

We can use this to extend F to L2(Rn) by density. If u ∈ L2, find un ∈ S such that
un → u in L2. Then un is Cuachy in L2, so Fun is Cauchy in L2. So limn→∞Fun =: Fu.

Remark 16.1. The Hahn-Banach theorem says that we can extend operators that are
densely defined, but in general, there is no guarantee of uniqueness.

However, it is not immediately clear that we can do this approximation of elements of
L2 by elements in S.

Proposition 16.2. If u ∈ L2, then there exist un ∈ D such that un → u in L2.

This says that D is dense in L2.

Proof. Step 1: Approximate u by compactly supported functions u = limn→∞ un :=
u1{|x|≤n}.

Step 2: Regularize u = limε→0 u ∗ ε. Here, ϕ ∈ D iwth |intϕ = 2, and ϕε = ε−nϕ(x/ε),
so ϕε → δ0 as ε→ 0. So u ∗ ϕε → u in D′ if u ∈ D′ and in L2 if u ∈ L2.

So we get the following theorem:

Theorem 16.3 (Plancherel). F : L2 → L2 is an isometry.
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16.3 Temperate distributions

Can we extend F to any larger spaces? First, we will talk about the Fourier transform as
a map F : S ′ → S ′.
Definition 16.1. S ′, the space of temperate distributions, is the space of distributions
which exend to continuous linear functionals on S.

u ∈ S ′ if there is a constant c such that for Rϕ ∈ S,

|u(ϕ)| ≤ c
∑
finite

pα,β(ϕ), pα,β(ϕ) = sup |xα∂βϕ|.

.
Heer is how we extend F and F ′ to S ′: For u, v ∈ S,

〈Fu, v〉 = 〈u,F−1v〉,

so we have Fu(v) = u(F−1v). Replacing v by v give Fu(v) = u(Fv), where u ∈ S ′ and
Fv ∈ S. So we can define

Fu = u(Fv)

for u ∈ S ′, v ∈ S.
S ⊆ E , so E ′ ⊆ S ′. If u ∈ E ′ (is compactly supported), then

Fu(ξ) = u

(
1

(2π)n/2
e−xξ

)
.

So we see that F : E ′ → E . The moral here is that “F interchanges decay and regularity.”

16.4 Examples of temperate distributions

When is a function a temperate distribution? If u ∈ S ′ and ϕ ∈ S,

u(ϕ) :=

∫
u(x)ϕ(x) dx,

where $(x) is rapidly decreasing. So if |u(x)| ≤ c(1+ |x|N ), then the integral is convergent.

Example 16.1. All rational functions are temperate distributions.

You should not get the idea that these are all the temperate distributions.

Example 16.2. Consider
u(x) = ex cos ex.

Think of u = ∂
∂x sin ex = ∂xf . Then

u(ϕ) = −f(∂xϕ),

where ∂xϕ ∈ S if ϕ ∈ S. So a temperate distribution may not have much decay if it has
enough oscillation, and there is a delicate balance between the two.

Here, if we have x, ∂ : S → S, we have extended x, ∂ : S ′ → S ′.

89



16.5 The Fourier transforms of δ0 and H

What is δ̂0?

δ̂0(ξ) = δ0

(
1

(2π)n/2
eix·ξ

)
=

1

(2π)n/2
.

Remark 16.2. People will often change the normalization constant in the Fourier trans-
form to get δ̂0 = 1. So people will also replace eix·ξ with e2πix·ξ. This is useful if you want
to deal with Fourier series or if you want to make a distinction between the Rn of the input
and the Rn of the ourput. These are actually the same space because Rn is the cotangent
space fo Rn. For more general spaces, the Fourier transform will not have the same input
and output domain. We will not need to worry about this for our PDEs.

In 1 dimension, we have ∂xH = δ0. Then

F(∂xH) = F(δ0),

which tells us that −iξF(H) = 1
(2π)n/2

. So we get that

Ĥ =
i

(2π)n/2
· 1

ξ
.

Take u compactly ussported in [0,∞). Then

û(ξ) =

∫
e−ix·ξu(x) dx.

Switch to complex numbers ξ + iζ. This integral ecomes∫
e−ixξ+xζu(x) dx.

If ζ < 0, we have exponential decay for x > 0. So û(ξ) extends to a holomorphic function
in {Im z ≤ 0}.

In this picture, we can think of

Ĥ =
i

(2π)n/2
· 1

ξ − i0
.

We can also look at

Ĥ − 1 =
i

(2π)n/2
· 1

ξ + i0
.

So if we take the average, we get

̂
H − 1

2
=

i

(2π)n/2
PV

1

ξ
.
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17 Using the Fourier Transform to Find Fundamental Solu-
tions

17.1 The Paley-Wiener theorem and the Fourier transform of even and
odd functions

We have been looking at the Fourier transform

û(ξ) =
1

(2π)n/2

∫
e−ix·ξu(x) dx.

We initially defined F : S → S, but we can also define it L2 → L2 (with the isometry
property) and S ′ → S ′. We have also seen that F : L1 → L∞.

Last time, we also saw that

Ĥ =
i

x− i0
.

If u ∈ S ′ with suppu ⊆ [0,∞), then û has a holomorphic extension to {Im z ≤ 0}. If u is a
measure, then û is bounded in {Im z ≤ 0}. This leads us to the following property. First,
let’s generalize this statement.

Suppose suppu ⊆ [a,∞). Then

û(ξ + iζ) =

∫
eixξ+xζu(x) dx,

so
|û(ξ + iζ)| ≤ eaζ .

The best we can hope for is a bound of the form eaζ |ξ|N .

Theorem 17.1 (Paley-Wiener). u ∈ S ′ has suppu ⊆ [a,∞) if and only if û has a holo-
morphic extension to the lower half-plane such that

|û(z)| ≤ e−a Im z|z|N .

Remark 17.1. There is a Paley-Wiener theorem in higher dimensions. If suppu ⊆ K for
some compact K, then û(ξ) is defined for ξ ∈ Cn. Instead of getting the support of u as
K in the other direction, we get the convex hull of K.

We can also think of the e−ix · ξ in the Fourier transform as cos(−x · ξ) + i sin(−x · ξ).

• If u is real and even, hen û is real and even.

• If u is real and odd, then û is imaginary and odd.

• If u is imaginary and even, then û is imaginary and even.

• If u is imaginary and odd, then û is real and odd.
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17.2 Using the Fourier transform to find fundamental solutions

Suppose we have a constant coefficient partial differential operator P (∂), and we want to
compute a fundamental solution P (∂)K = δ0. Let D = 1

i ∂. Taking the Fourier transform
gives

P (ξ)K̂ =
1

(2π)n/2
1.

This tells us that

K̂ =
1

(2π)n/2
P (ξ).

So we can invert the Fourier transform to get K:

K =
1

(2π)n/2
F−1

(
1

P (ξ)

)
.

Here are some issues.

• p(ξ) may have zeros.

• If p has zeroes, then 1
p is not uniquely determined as a distribution.

• This procedure only gives fundamental solutions which are temperate distributions.

The easy case is when p(ξ) 6= 0 for any ξ ∈ Rn. Then 1
p ∈ S

′, so this computation is
justified.

Example 17.1. Suppose P = −∂2
x + 1 = D2

x + 1. Then P (ξ) = (1 + ξ2). So we compute

K(x) = F−1

(
1

1 + ξ2

)
.

This K(x) is real and even. We are looking at∫
R

1

ξ2
eixξ dξ.

This integrand has a pole at i and a pole at −i. However, we can expend this using partial
fractions:

1

1 + ξ2
=
i

2

1

ξ + i
− i

2

1

ξ − i
,

where the first term is holomorphic if Im ζ > 0 and the second is holomorphic if Im ζ < 0. So
the Paley-Wiener theorem tells us that the first one will have an inverse Fourier transform
supported in (−∞, 0], and the second one will have an inverse Fourier transform supported
in [0,∞).
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If x < 0, we can use complex analysis to say∫
R

1

ξ + i
eixξ dξ = Residue at i = ex.

A similar computation for x > 0 suggests that we should get∫
R

1

ξ2
eixξ dξ = ce−|x|.

In general, if K is a fundamental solution, then so will be K + K0, where K0 solves
the homogeneous equation P (∂)K0 = 0. In this case, our general solution is K = ce|x| +
c1e

x + c2e
−x. We did not get these latter two terms before because they are not temperate

distributions.

Example 17.2. If P = −∆ + 1, then P (ξ) = ξ2 + 1 in Rn. Then

K = F−1

(
1

1 + ξ2

)
gives the unique temperate fundamental solution. Note that eix·ξ is a solution iff 1+ξ2 = 0.
In 3 dimensions, this is K(x) = e−|x| 1

|x| .

Example 17.3. Let P = −∆, so P (ξ) = ξ2. Then K = 1
ξ2 is locally integrable in Rn if

n ≥ 3. So if n ≥ 3, we get that K ∈ S ′ is a homogeneous temperate distribution. Since 1
ξ2

is homogeneous of order −2, K = F−1( 1
ξ2 ) will be homogeneous of order 2− n.

Proposition 17.1. If u is homogeneous of order s, then û is homogeneous of order −n−s.
The example to keep in mind to make sure your numbers are right is δ̂ = 1

(2π)n/2
. The

Dirac mass is homogeneous of order −n, whereas this constant function is homogeneous of
order 0.

Example 17.4. If P = −∆ with n = 2, perform the same computation as before, but
interpret 1

ξ2 as a distribution:

1

|ξ|2
(ϕ) = lim

ε→0

∫
R2\B(0,ε)

ϕ(ξ)

|ξ|2
dξ − ϕ(0) ln ε,

so we pay a price of log, which makes us lose the homogeneity property.

Example 17.5. Suppose P (ξ) = Aξ · ξ, where A is a positive deifnite matrix. This is
a second order, elliptic, constant coefficient PDE with P = ai,j∂i∂j . We can transform
A → Id by a linear fransformation. Let x = By, so x · ξ = By · ξ = y · B>ξ. If we carry
out the computation, we end up with

K =
1

(A−1x · x)(n−2)/2
.

Hormander’s book extensively discusses how the Fourier transform behaves under linear
changes of coordinates.
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17.3 Fundamental solution of the heat equation

Recall the heat equation
(∂t −∆)u = f.

We think of u as the temperature of an infinite solid and f as describing the heat sources.
This is also called the diffusion equation, since we can, for example, interpret u(t, x) as a
local concentration of salt in the water of an ocean. In probability theory, the heat equation
has connections to Brownian motion, where we let a particle move randomly at every time,
independently of the movement at other times.

Our Fourier variables will be ξ (corresponding to x) and τ (corresponding to t). We
can write our operator as14

∂t −∆ = iDt +D2
x,

so
P (ξ, τ) = iT + ξ2,

which vanishes only at τ = 0, ξ = 0. Is 1
iτ+ξ2 ∈ L1

loc? Yes! The 1/τ increases the local
integrability of this expression, so we will not need to make a distinction between the cases
n = 2 and n ≥ 3. We want to calculate

F−1

(
1

iτ + ξ2

)
.

First integrate in τ : We have a pole at τ = iξ2. This pole is in the upper half plane, so
F−1
τ ( 1

iτ+ξ2 ) is supported where t > 0. This says that the evolution of heat is well-defined
in the future, rather than in the past. We conclude that

F−1
τ

(
1

iτ + ξ2

)
= ce−tξ

2
1{t≥0}.

for some constant c. Then we can calculate

F−1

(
1

iτ + ξ2

)
=

1

(4πt)n/2
e−

x2

4t 1{t≥0}.

Here is another approach. We can try to solve{
(∂t −∆)u = 0

u(0) = δ0

Take the Fourier transform in x to get{
(∂t + ξ2)û = 0

û(0) = 1
(2π)n/2

.

14Warning: Evans’ book means something different with the D notation.
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This gives

û =
1

(2π)n/2
e−tξ

2
.

So we get the same result.
For t > 0, we can consider {

(∂t −∆)u = 0

u(0) = u0.

Extend u to

ũ =

{
u t > 0

0 y < 0.

Then
(∂t −∆)ũ = u0(x)δt=0.

Here, u0 = δx=0, so u0δt=0 = δ(0,0).
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18 The Schrödinger Equation, the Uncertainty Principle,
and Oscillatory Integrals

18.1 Fundamental solution of the Schrödinger equation

Recall the heat equation
(∂t −∆)u = f in Rt × Rnx.

This has fundamental solution

K(t, x) =
1

(4πt)n/2
e−x

2/(4t)
1{t≥0}.

This is the unique temperate distribution for the heat equation.
We also have the Schrödinger equation

(i∂t + ∆)u = f in R× Rn.

Unlike the heat equation, this equation fundamentally has complex-valued solutions. This
is the fundamental PDE in quantum mechanics, where u(t) is interpreted as the state of
a particle at time t in a probabilistic sense as follows: ‖u‖L2 = 1, and |u|2 is viewed as a
probability distribution. In particular,

P(p ∈ E) =

∫
E
|u|2 dx,

where p can be the position of a particle. In this picture, the Fourier transform also plays
a role. Here, |û|2 is the probability density of the velocity of the particle. Plancherel’s
theorem tells us that ‖û‖L2 = 1, as well.

Let P (τ, ξ) = τ−ξ2. Then the fundamental solution to the Schrödinger equation should
be K = F−1( 1

τ−ξ2 ). The issue is that τ − ξ2 has an entire parabola worth of zeroes. How

do we think of 1
τ−ξ2 as a distribution? If we just view this as a distribution in the variable

τ , this is like the distribution 1
x , which gives a few different ways to think of it:

1

−τ − ξ − i0
,

1

−τ − ξ2 + i0
, PV

1

−τ − ξ2
.

Note that these first two solutions indicate that the Schrödinger equation, unlike the heat
equation, can be run backwards in time. How do we pick one of these options? We might
want to look for a solution that looks like it’s moving forward in time: suppK ⊆ {t ≥ 0}.
This implies that K̂ should have a holomorphic extension in the lower half-plane. Then
our forward fundamental solution is

K(t, x) = F−1

(
1

−τ − ξ2 − i0

)
.
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First, we will take the Fourier transform with respect to τ . That ξ = 0, this gives H(t).
Recall that F−1δ0 = 1, and F−1δξ0 = eixξ0 . This is a general rule for the Fourier transform

of the translation of a distirbution, so when ξ 6= 0, we get K(t, ξ) = H(t)e−iξ
2t.

Alternatively, take only a spatial Fourier transform of the Schrödinger equation{
(i∂t + ∆)u = 0

u(0) = u0 = δ0(u)

to get {
(i∂t + ξ2)û(ξ) = 0

û(0) = 1.

This gives û(ξ) = eitξ
2
, so u = F−1(e−itξ

2
). Recall that F(e−ξ

2/2 = e−x
2/2 and more

generally that Fe−λξ2/2 = 1
λn/2

e−x
2/(2λ) for λ ∈ R+.

Extend this to complex λ. For what complex λ is 1
λn/2

e−x
2/(2λ) a temperate distribu-

tion? This is the right half plane {λ : Reλ ≥ 0}. For Reλ > 0, the function e−λξ
2/2 is

analytic with values in S. This tells us that its Fourier transform is analytic for Reλ > 0
and we can uniquely extend it to an analytic function on {Reλ > 0}. What about when
Reλ = 0? As λ = it + ε → it, e−(it+ε)ξ/2 → e−itξ

2/2 in S, i.e. in the topology of tem-
perate distributions. So the Fourier transforms converge in the same sense. Thus, we get
fundamental solution

K(t, x) =
1

(4πit)n/2
eix

2/(4t)
1{t≥0}.

Remark 18.1. Note that û(t, ξ) = eitξû0(ξ), which means that

|û(t, ξ)| = |u0(ξ)| =⇒ ‖û(t)‖L2 = ‖u0‖L2 .

So |û| remains a probability distribution for all time t ≥ 0.

18.2 The uncertainty principle

Cane we closely predict both position and velocity? Can we have suppu ⊆ I and supp û ⊆ J
for compactly supported intervals I, J? The answer is no. If suppu is compact, then û is
analytic. So u must be 0.

Let’s try to localize our particle at x = 0, ξ = 0. Let

(δx)2 =

∫
|u|2(x) · x2 dx

be the mean square deviation from 0. We can do the same for velocity to get

(δξ)2 =

∫
|û|2(ξ) · ξ2 dξ.
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Is there a function u ∈ L2 with ‖u‖L2 = 1 such that δx and δξ are simultaneously small?
This is not possible. Observe that

δx = ‖x · u‖L2 ,

while Plancherel’s theorem tells us that

δξ = ‖ξ · û‖L2 = ‖∂xu‖L2

We can compute the inner product

Re

∫
xu · ∂xu dx =

∫
x · 1

2
∂x|u|2︸ ︷︷ ︸

u∂xu+u∂xu

dx

Now integrate by parts to get

= −
∫
n

2
|u|2 dx

= −n
2
‖u‖2L2 .

So we conclude that

‖u‖2L2 = −2nRe〈xu, ∂xu〉L2

≤ 2n‖xu‖L2‖∂xu‖L2 .

So we get the following:

Theorem 18.1 (Uncertainty principle).

δx · δξ ≥ 1

2n

This says that we cannot know the position of an electron without sacrificing informa-
tion about its velocity. In physics, people write the Schrödinger equation as i∂t+c∆u = f ,
where c is a constant involving ~, Planck’s constant. This gives the following physically
normalized version of the uncertainty principle:

δx · δξ ≥ ~
2n

18.3 Oscillatory integrals and the KdV equation

We have seen the integral
∫
eitξ

2
eix·ξ. Can we compute the more general integral

∫
eiλϕ(ξ) dξ,

where ϕ is a phase function? How does this integral behave as λ→∞? Let us make the
following observation in 1 dimension.
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Proposition 18.1. If ϕ′ 6= 0, then for any N ,∫
eiλϕ(ξ)a(ξ) dξ = o(λ−N ).

This is called an oscillatory integral.

Proof. Suppose ϕ′ 6= 0. Then localize to a compact set with a function a and integrate by
parts: ∫

eiλϕ(ξ)a(ξ) =

∫
ϕ′eiλϕ · a

ϕ′
dξ

=
i

λ

∫
eiλϕ(ξ)∂ξ

(
a

ϕ′

)
dξ,

so we have gained a factor of 1/λ. Now repeat this.

The conclusion is that the main contribution comes from the critical points of ϕ. The
study of oscillatory integrals via their critical points is called the method of stationary
phase.15 From the perspective of PDEs, we want to use oscillatory integrals to compute
asymptotic expansions of fundamental solutions which are not explicit.

Example 18.1 (KdV equation16). The KdV equation is

(∂t + ∂3
x)u = 0.

It describes unidirectional waves in a canal.

If you want to make this a linear equation, we can consider the case where this equals 6uux.
Let’s compute a fundamental solution. We want to compute the inverse Fourier transform
of 1

τ−ξ3 . For a forward fundamental solution, we want

K = F−1

(
1

τ − ξ3 − i0

)
.

15This is an important topic in harmonic analysis, and people have spent their whole careers studying
oscillatory integrals.

16This is short for Korteweg-de Vries.
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We have
K(t, ξ) = eitξ

3

If we take the Fourier transform in time, we get K(t, ξ) = eitξ
3
. So now we want to take

the integral ∫
ei(tξ

3+xξ) dξ

The solution will not be an algebraic function; instead, it will be something we label as a
“special function,” the Airy function. In particular, F−1(eiξ

3
) = Ai(x).

Let’s try to compute the asymptotic behavior. The phase is ϕ(ξ) = tξ3 + xξ. The
critical points are when

3tξ2 + x = 0 =⇒ ξ2 = − x
3t
.

This has roots only when x < 0, which is why this equation only gives waves in 1 direction.
We get two critical points:

ξ1 =

√
− x

3t
, ξ2 =

√
− x

3t

At each critical point, replace the cubic polynomial with a quadratic polynomial which is
the Taylor series of the polynomial, and take the Fourier transform like with our analysis
of the Schrödinger equation.
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19 The KdV Equation and the Wave Equation

19.1 Fundamental solution of the KdV equation

Last time, we were discussing the KdV equation

(∂t + ∂3
x)u = f.

We saw that the fundamental solution was given by

K̂(t, ξ) = eitξ
3
.

Taking the inverse Fourier transform in x gives

K(t, x) =

∫
ei(tξ

3−xξ) dξ.

This problem admits a type of scaling. If we want

(∂t + ∂3
x)u = 0,

then we can make a change of variables u(x, t) 7→ u(λx, λ3t). If we want to get rid of the
time variable, we can set ξ = t−1/3ξ, so the integral becomes

K(t, x) = t−1/3

∫
eiη

3+x/t1/3η dη

= t−1/3K(1, x/t1/3)

= t−1/3 Ai(x/t1/3),

where

Ai(x) = F−1(eiξ
3
) =

∫
ei(ξ

3+xξ) dξ.

In this integral, we have the phase function ϕ(ξ) = ξ3 + xξ. The critical points, with
ϕξ = 0, are ξ1,2 ±

√
−x/3 with x < 0.

Let’s draw a picture of the Airy function; this is real-valued because the equation is
real, so the real and imaginary parts of any solution should also be solutions. At +∞, we
have no stationary points, so we expect rapid decay. This decay is O(e−x

3/2
), which one

can prove by changing the contour in the integral (to some other integral over a contour
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in the complex plane).

Choose ξ =
√
−x/3, look at the contribution around ξ1, and take 2 Re.

ϕ(ξ) = ϕ(ξ1) +
1

2
ϕ′′(ξ1)(ξ − ξ1)2 +O((ξ − ξ1)3)︸ ︷︷ ︸

discard

We are multiplying two functions, a Gaussian and a function with oscillation.

Recall that F−1(eiλξ
2/2) = − 1

(iλ)n/2
eix

2/(2λ). Now obsesrve that the Fouerier transform lets

us figure out the integral of a function: û(0) = 1
(2π)n/2

=
∫
u(x) dx. So can calculate this

integral: ∫
ei(ϕ(ξ1)+ 1

2
ϕ′(ξ1)(ξ−ξ1)2) dξ = eiϕ(ξ1) 1

(iϕ′′(ξ1))1/2
.

Now write

ϕ(ξ1) = ξ1(ξ2
1 + x) =

2

3
x
√
−x/2 = c(−x)3/2,
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ϕ′′(ξ) = 6ξ = c(−x)1/2

In total, we get something of the form

eic(−x)3/2
(−x)−1/4.

This left term oscillates faster and taster, while the right term has a decay. So we can
improve our picture of the Airy function:

The homework says that Ai′′(x) = xAi(x) (up to some constants/signs). There are
two solutions to this equation; why are we only getting the Airy function? This is because
using the Fourier transform only solves for temperate solutions. The other solution will
look like the Airy function for negative x but has exponential (specifically e+x3/2

) growth
as x→∞. The Airy function has nice properties, and it actually extends to a holomorphic
function.17

19.2 Analysis of the wave equation

Definition 19.1. The d’Allembertian is the partial differential operator

� = ∂2
t −∆x.

Definition 19.2. The wave equation is the equation
�u = f

u(t = 0) = u0

∂tu(t = 0) = u1

17Professor Tataru really likes the Airy function. He used to put it on exams, until one time when he
put it on a calculus exam. That didn’t go so well.
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This is an evolution equation which is 2nd order in t.
What does the wave equation model? In 1 dimension, this modes an elastic string. In

2 dimensions, it models an elastic drum, and in 3 dimensions, it models an elastic solid.
The wave equation also models, sound, light, and electromagnetism.

Our goal is to find the fundamental solution. The symbol for the equation is P (τ, ξ) =
−τ2 + ξ2. Then we get

K(t, x)−F−1

(
1

−τ2 + ξ2

)
.

The zero set of P , (the characteristic set) contains the points where τ2 = ξ2. In 1
dimension, this looks like an X, but in n dimensions, this looks like 2 cones.

Like we have seen before, this is not uniquely defined as a distribution. We want to
pick a forward fundamental solution, so we will look at this as a function of τ and think
of this as a function which is holomorphic in the lower half plane:

K(t, x) = F−1

(
1

−(τ − i0)2 + ξ2

)
.

We will take the Fourier transform first in τ and then in ξ. First, expand the fraction into
partial fractions:

1

−τ2 + ξ2
=

A

τ − |ξ|
+

B

τ + |ξ|
,

A = − 1

2|ξ|
, B =

1

2|ξ|
.

So

F−1

(
1

−(τ − i0)2 + ξ2

)
= −H(t)

eit|ξ| − e−it|ξ|

2|ξ|

= −isin(t|ξ|)
|ξ|

.

This is hard to compute the Fourier transform directly in n dimensions, but the 1-dimensional
computation is easier: We are looking at

−isin(tξ)

ξ
=

1

2

eitξ − e−itξ

ξ − i0
.
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Taking the inverse Fourier transform, we note that multiplying phase factors just translate
the Fourier transform. We get

1

2
(H(x+ t)−H(x− t)) =

1

2
1[−t,t].

Theorem 19.1. The fundamental solution to the wave equation in 1 dimension is

K(t, x) =

{
1/2 x > 0,−t ≤ x ≤ t
0 otherwise.

How should we approach this for n ≥ 2? The distribution 1
−(τ−i0)2+ξ2 is homogeneous

of order −2, so K will be homogeneous of order (−n− 1)− (−2) = −n+ 1. We could try
to replace x by r = |x|, making an ansatz that the solution is radial, but this is not very
nice because we still have a PDE in 2-dimensions. This is easier to solve in 3 dimensions,
so we can add a dimension and then pretend it doesn’t exist after we solve the equation;
this is probably how it was done in the early 1900s.

Instead, let’s look at the symmetries of �. This is translation-invariant and invariant
under rigid rotations in x. The latter suggests that we could look for more general linear
transformations which � is invariant under. We will change our notation from (t, x) to
(x0, . . . , xn), where t = x0 and x = (x1, . . . , xn). Here’s how to make sure we won’t get
confused about which variables are time. A notational convention which goes back to
Einstein says we write xα for α = 0, . . . , n and xj for j = 1, . . . , n. Now apply a change of
variables to get y = Ax. Then

∂

∂xk
=
∂yj
∂xk

∂

∂yj
= aj,k

∂

∂yj
.

Here, we are using Einstein’s summation convention, where we omit the sum over j.
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Change convention so that � = −∂2
t + ∆x and write � = mα,β∂α∂β, where18

M =


−1

1
. . .

1

 .
If we switch to the coordinates of y = Ax, we have

� = mα,βaα,γ∂y,γaβδ∂yδ

= bγ,δ · ∂y,γ∂y,δ,

Here, βγ,δ = aα,γm
α,βaβ,δ. This new matrix is A>MA. Then A is a symmetry of � iff

M = A>MA.
Next time, we will find what the symmetries are.

18The letter m comes from Minkowski. instead of Euclidean space, we can think of this as a Minkowski
space
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20 Fundamental Solutions to the Wave Equation

20.1 Lorentz invariance of fundamental solution

Last time, we were solving the wave equation
where

� = ∂2
t −∆x

= mα,β∂α∂β

in coordinates t = x0 and ∂t = ∂0. The matrix M is given by

M =


−1

1
. . .

1

 .
Last time, we determined that a fundamental solution is homogeneous of order 1 − n

and must move forward in time. We looked at a symmetries of the equation when we make
a linear change of coordinates x = Ay. We saw that such a linear change of coordinates
leaves � unchanged if and only if

A>MA = M.

This is a group, called the Lorentz19 group; if M were the identity matrix, this would be
the group or orthogonal matrices. What are the generators for this group?

1. Rigid rotations: A =

[
1 0
0 O

]
, where O is an n × n orthogonal matrix. These were

the symmetries corresponding to the Laplacian.

2. Look at 1+1 dimensions and leave the rest unchanged: Since we can apply rotations
to the last n dimensions, we only need to mix the time dimension and the first space
dimension. Observe that[

a c
b d

] [
−1 0
0 1

] [
a b
c d

]
=

[
−1 0
0 1

]
.

If −1 were 1, we would get rotations:

A =

[
cos θ sin θ
− sin θ cos θ

]
= rotation by angle θ.

19This is not to be confused with Lorenz, another mathematician who also had a hand in some things we
will be discussing today. To make matters worse, they even wrote a paper together!
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This keeps t2 +x2 unchanged; this is like rotating around a point in a circle by angle
θ.

With the −1, we get

A =

[
coshϕ sinhϕ
sinhϕ coshϕ

]
= hyperbolic rotation by angle ϕ.

Such matrices keep t2−x2 unchanged. Rather than circles, here’s what the level sets
look like:

Here, we dilate the t = x direction and shrink the t = −x direction. This suggests
that we make a change of variables u = t + x and v = −x. Then ∂2

t − ∂2
x = 4∂u∂v.

Then the transformation u 7→ λu, v 7→ λ−1v preserves the operator in this null
frame.

Theorem 20.1. The Lorentz group is generated by rigid spatial rotations and 1-d hyperbolic
rotations.20

20Hyperbolic rotations are sometimes referred to as Lorentz boosts. These hyperbolic rotations are what
happens in special relativity when you switch between observers in different reference frames.
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We say that the solution to the wave equation is Lorentz invariant.

20.2 Calculation of fundamental solutions

We now know that the fundamental solution of the wave equation should be a “function”
of t2 − x2. Here is what the picture should look like in higher dimensions.

The level sets should be forward and backward cones and hyperboloids. We get 1-sheeted
and 2-sheeted hyperboloids. On the 1-sheeted hyperboloids, the forward in time points
are connected to the backwards in time points, which must give 0 for our forward time
solution. So these must be 0. Thus, K = K(t2 − x2) = K(y) must be supported in the
forward cone {t2 − x2 ≥ 0}.21 We want a homogeneous distribution of y which is 1−n

2
homogeneous (since we are now working with the squares of t, x) and supported in y ≥ 0.

• In 1 dimension, we want a homogeneous distribution of order 0, supported where
y > 0. So K(y) = cH(y), and we saw earlier that this constant is c = 1/2.

• In 2-dimensions, we want a homogeneous distribution of order −1/2, supported where
y > 0. So we get

K(y) =

{
c2

1√
y y > 0

0 y ≤ 0.

So we get

K(t, x) = c2
1√

(t2 − x2)+

1t≥0.

21A backward time solution would still be 0 on the sides. It would just be supported on the backward
cone.
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• In 3-dimensions, we cannot get a function which is homogeneous of order −1. The
two distributions that span the space of homogeneous distributions of order −1 are
δ0 and PV 1

y . The latter is supported everywhere, so we take K(y) = δy=0.

K(t, x) = c3δt2−x2=01t≥0.

• In 4 dimensions, we need homogeneity of order −3/2. However, 1

y
3/2
+

/∈ L1
loc. Define

1

y
3/2
+

:= −2∂y
1

y
1/2
+

.

This is a distribution, not a function. We can repeat this differentiation procedure
to get a solution for all even dimensions.

• In 5 dimensions, we can get a solution which is homogeneous of order 2 by differen-
tiating δy=0. We can keep differentiating to get solutions in all odd odd dimensions.

20.3 Determination of constants for fundamental solutions

Here is a formal computation: If �u = f , let’s see how
∫
u dx behaves as a function of

time.
d

dt

∫
u dx =

∫
ut dx.

d2

dt2

∫
u dx =

∫
utt dx =

∫
∇u+ f dx =

∫
f dx,

since we can get rid of the Laplacian using integration by parts. If f = δ0 and u = K, then
u = 0 for t < 0, so

I(t) =

∫
u dx = 0 for all t < 0.

Additionally, we get
I ′′(t) = δt=0.

This tells us that
I(t) = t1t≥0,

so ∫
K(t, x) dx = t.

• In 2 dimensions, we have

K(t, x) =
c2√

(t2 − x2)+

,
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so the equation

t = c2

∫
1√

(t2 − x2)+

dx

holds for all t. if we set t = 1, then we get

1 = c2

∫
B(0,1)

1√
1− r2

r dr dθ = c22π
[
−
√

1− r2
]1

0
,

which tells us that

c2 =
1

2π
.

• In 3 dimensions, we want to find c3. What is δt2−x2?

δ0 =
1

2πi

(
1

y − i0
− 1

y + i0

)
,

so we can write

δt2−x2 =
1

2πi

(
1

t2 − x2 + i0
− 1

t2 − x2 − i0

)
.

Note that
t2 − x2

=

1

t− |x|
1

t+ |x|
,

where the left term vanishes on the cone, and t + |x| is 2t on the cone. so we can
write

δt2−x2=0 = δt=|x|︸ ︷︷ ︸
surface measure on |x| = t

· 1
2t
.

If we have a surface Σ = {φ = 0}, this is like normalizing to make |∇φ| = 1.

The computation becomes

K(t, x) = c3
1

t
δ|x|=t.

t =

∫
c3

t
δ|x|=t dx =

c3

t
Area({|x| = t})︸ ︷︷ ︸

=4πt2

.

so we get

c3 =
1

4π
.
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20.4 Physical interpretation of solutions to the wave equation

Here are two key properties of the wave equation:

1. All forward solutions are supported on the forward cone. This is referred as the finite
speed of propagation. This says that waves move with speed ≤ 1. If we normalize
the equation with physical constants to get c2∂2

t −∆x, where c is the speed of light,
then this says that no waves move faster than the speed of light. An observer at
position x only observes the wave at the time at which the cone hits the observer’s
timeline:

2. Consider 3 dimensions, where the fundamental solution K is supported exactly on
the cone. Here, waves hit the observer just once, and we don’t see them again. This
is called the Huygens principle.

Remark 20.1. The equations of physics are nonlinear; this linear PDE is just the best
linear approximation. The finite speed of propagation remains, but Huygen’s principle does
not hold in general. When scientists observed gravitational waves recently, they observed
both a Dirac mass and a nonlinear tail.

20.5 Next steps: Fourier series

Our next goal is to learn about the connection between the Fourier transform and Fourier
series. The Fourier transform û of u : Rn → C is given by

u(x) =

∫
û(ξ)eix·ξ dξ.
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In calculus, you may have encountered Fourier series:

Definition 20.1. If u : [0, 2π]→ C, then the Fourier series for u is given by

u(x) =
∑
n

cne
inx =

∑
n

cn(cos(nx) + i sin(nx)).

Not all PDEs can be solved; we will see more about this next time.
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21 Fourier Transforms of Periodic Functions and Local Solv-
ability of Partial Differential Operators

21.1 Fourier transforms of periodic functions

A function f is periodic if
f(x) = f(x+ a)

for some a and for all x.

Definition 21.1. f ∈ D′ is periodic of period a if

f(φ) = f(φ(·+ a))

Suppose f is periodic; what can we say about f̂? Recall that for functions,

f̂(·+ a) = eia·ξ f̂ .

Using the periodic condition, write this as the multiplication

f̂(1− eiaξ) = 0.

Note that 1 − eiaξ 6= 0 unless ξ = 2πn
a . Then supp f̂ ⊆ 2πn

a Z. As an analogy look at the
condition xf = 0 =⇒ f = cδ0; here, we have zeros at many points. So we conclude that

f̂ =
∑
n

cnδ 2πn
a
.

Theorem 21.1. The coefficients cn are the Fourier coefficients for f in the interval [0, a],
and

f(x) =
∑
n

cne
2πi
a
n.

Here, we have ignored the factors of 2π.

Remark 21.1. We can multiply f by e−
2πi
a
m and integrate from 0 to a to get

cn =

∫
f(x)e−

2πi
a
mx.

Example 21.1. The simplest periodic distribution is

fa =
∑
n

δna.

Then
f̂a =

∑
n

cnδ 2π
a
n.
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If we write
fa(1− e

2πix
a ) = 0,

then we get
f̂a = f̂a(·+ 2π

a ).

Thus, all the cns are the same. So

f̂a = ca
∑
n

δ 2πn
a

= caf 2π
a
.

What is ca? Apply this to a Schwarz function: f̂(φ) = f(φ̂) by definition, so

ca
∑
n∈Z

φ(2πn
a ) =

∑
m∈Z

φ̂(ma).

This is called the Poisson summation formula.
Now what happens if we replace φ by φeix·ξ0? Then (̂ξ) becomes φ̂(ξ−ξ0). The Poisson

summation formula gives

ca
∑
n

φ(2πn
a )ei

2πn
a
ξ0 =

∑
φ̂(ma− ξ0).

The dependence of ξ0 on the left hand side is simple. Integrate to get∫ a

0

∑
n

φ(2πn
a )ei

2πn
a
ξ0 dξ0︸ ︷︷ ︸

=acaφ(0)

=

∫ a

0

∑
m

φ̂(ma− ξ0) dξ0

=

∫
φ̂(ξ) dξ

= φ̂(1)

= φ( 1√
2π
δ0)

=
1√
2π
φ(0).

Accounting for the constants we ignored before, we get

ca =
1

2πa
.

Remark 21.2. We can use the Poisson summation formula to compute all sorts of series.
Recall that F( 1

1+x) = ce−|ξ| (perhaps omitting constants). Choose a = 2π. The Poisson
summation formula tells us that∑

m∈Z

1

n2 + 1
=
∑
m

e−2π|m| =
2

1− e2π
− 1,

where we have ignored the constants.
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21.2 Local solvability of partial differential operators

Let P (D) be our partial differential operator with constant coefficients.

Definition 21.2. P (D) is solvable if for each f , the equation P (D)u = f admits at least
one solution.

If f ∈ D′, then u ∈ D′. If f ∈ S, then u ∈ S. In general, the regularity of f and u will
be related, so when we say P (D) is solvable, we specify a class of functions f .

Definition 21.3. P (D) is locally solvable if for each f ∈ E ′, there exists a solution
u ∈ D′ in a neighborhood of the support of f .

If u ∈ E ′, then P (ξ)û(ξ) = f̂(ξ) for ξ ∈ Cn. Here is a narrower version, which we may
regard as the “real definition” of local solvability:

Definition 21.4. P (D) is locally solvable if for each x0, there is an ε > 0 such that if
supp f ⊆ B(x0, ε), then a solution exists.

For today, we will deal with the first, more relaxed definition.

Theorem 21.2. Every constant coefficient partial differential operator is locally solvable
(in the relaxed sense).

Proof. Suppose f is supported in B ⊆ [0, 2π]n. Take f̃ to be the periodic extension of f ,
and look for a periodic solution ũ to P (D)û = f̃ .

What does this periodization do? Originally, P (D)u = f gives P (ξ)û = f̂ , so û = 1
P (ξ) f̂ .

However, this has issues because P (ξ) can have issues. In the periodic case, we know

̂̃
f(ξ) =

∑
m∈Zn

fmδm,

116



̂̃u(ξ) =
∑
m∈Z

umδm.

We need P (m)um = fm, which gives

um =
fm
P (m)

, m ∈ Zn.

The advantage is that we only P (m) 6= 0 on lattice points m ∈ Zn. However, the Fourier
transform is defined for temperate distributions, so we need about on fm

Pm
. More precisely,

we need a bound
|P (m)| ≥ (1 + |m|)−N

What if P has zeroes on the lattice points? Make the change of notation f 7→ feix·ξ = g,
so u 7→ ueixξ = v. We can ask this question for the phase-shifted variables. To study our
equation, we need to expand

P (D)u = P (D)(ve−ix·ξ).

To use the Leibniz rule, note that,

Dj(ve
−ixξ) = Dve−ix·ξ + vDje

−ix·ξ

= e−ix·ξ(Djv − vξj)
= e−ix·ξ(Dj − ξj)v,

We can write this as eix·ξDje
−ixξ = Dj − ξj , which we may think of as a conjugation.

Referring to our equation, we get

P (D)u = P (D)(veix cdotξ

= e−ix·ξp(D − ξ)v
= f,

which tells us that we have replaced P (D)u = f with

P (D − ξ)v = g.

So we only need to solve the new periodic problem is to define

vm =
gm

P (m− ξ)
, m ∈ Z.

Now we only need to find some ξ ∈ [0, 1]n such that

|P (m− ξ)| ≥ (1 + |m|)−N ∀m.

The following lemma tells us we can find such a ξ.
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Lemma 21.1. If δ is small enough, then∫
1

(P (η))δ
1

(1 + |η|)N
dη <∞.

Proof. In 1 dimension, use partial fractions. Then reduce any number of dimensions to the
1-dimensional case.

How does this help us? Write η = m+ ξ with m ∈ Zn and ξ ∈ [0, 1]n. Then∫
ξ

∑
m

1

P (m− ξ)|δ
1

(1 + |m|)N
dη <∞.

So for almost every ξ, ∑
m

1

|P (m− ξ)|δ
1

(1 + |m|)N
= M <∞.

This tells us that
|P (m− ξ)| ≥M−1/d(1 + |m|)−N/δ,

which is exactly the relation we want to have.
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22 Properties of Harmonic Functions

22.1 Elliptic regularity

Recall that if we have the Laplace equation

−∆u = f in Rn,

then we have the fundamental solution

K(x) =

{
cn
|x|2−n = cn

|x|2−n| n ≥ 3
1

2π ln |x| n = 2,

and we can get a solution u = K ∗ f . However, there are a number of questions we have
not answered, such as uniqueness of solutions.

Definition 22.1. A function u such that −∆u = 0 is called harmonic.

Theorem 22.1 (Elliptic regularity). Harmonic functions are smooth.

That is, if we have a local solution u ∈ D′, we want to show that u ∈ C∞. Why should
harmonic functions be smooth? This is because the fundamental solution K is smooth
away from 0. Let’s see how the reasoning goes.

Proof. Let Ω be the domain where u lives. Choose a point x0 ∈ Ω, and we want to show
that u is smooth around x0. Draw a ball B around x0 and a larger ball 2B around B. To
use the fundamental solution, chop off u by using a cutoff function

χ(x) =


1 x ∈ B
smooth x ∈ 2B \B
0 x ∈ 2Bc
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If we let v = χu, then

−∆u = −χ∆u︸ ︷︷ ︸
=0

−u∆χ− 2∇u · ∇χ.

This gives us the new problem

−∆ = f, f ∈ D′, supp f ⊆ 2B \B.

Then

v(x) = (K ∗ f)(x)

=

∫
K(x− y)f(y) dy.

Suppose we want a local solution in, say, B/2, where B has radius R. If x ∈ B/2 and
y ∈ 2B \ B, then |x − y| ≥ r/2. Now K(z) is smooth where |z| ≥ r/2, which means this
convolution is smooth for x ∈ B/2.

Remark 22.1. We didn’t use much about the Laplace equation itself here. We only used
the fact that K is smooth away from 0.

Remark 22.2. This is not all there is to elliptic regularity. K is analytic away from 0,
which tells us that u is analytic.

Remark 22.3. More generally, we may want to make statements about what kind of
regularity u has if f has a certain degree of regularity. This is what elliptic regularity
really is, and this is only the tip of the iceberg.

22.2 The maximum principle

Definition 22.2. A function u such that −∆u ≤ 0 is called subharmonic.

Definition 22.3. A function u such that −∆u ≥ 0 is called superharmonic.

We will prove results for harmonic functions and claim that they hold for sub and
superharmonic functions, as well.

Suppose −∆u = 0 in Ω. Where is the max/min of u? The first step to answering this
question is to look at the mean value property.

Theorem 22.2 (Mean value property). Suppose −∆u = 0 in B(x0, a). Then

u(x0) =
1

|B|

∫
B
u(x) dx

=
1

|∂B|

∫
∂B
u(x)dσ,

where σ is surface measure on the sphere ∂B.
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Remark 22.4. If we assume u is subharmonic, i.e. −∇u ≤ 0, then we get ≤ instead of
equalities. The reverse inequality holds for superharmonic functions.

Lemma 22.1 (Green’s theorem). Suppose u : Ω→ R. Then∫
Ω
∂ju dx =

∫
∂Ω
u · νj dσ,

where νj is the outward pointing normal to ∂Ω. Equivalently,∫
∂juj︸︷︷︸
div u

dx =

∫
∂Ω
u · ν dσ.

Here’s how we can use this: Integrating by parts twice in the following integral keeps
the sign the same and introducing 2 boundary terms:∫

−∆u · v dx−
∫

Ω
u · (−∆n) dx =

∫
∂Ω
∂juνj︸ ︷︷ ︸
∂u
∂v

·v − u · νj∂jv︸ ︷︷ ︸
∂v
∂ν

dσ,

where these are normal derivatives. Now let’s prove the mean value property:

Proof. Suppose B = B(0, r), and apply Green’s theorem with a well-chosen v. Looking at
our equation, it would be nice if we could make v = 0 on the boundary. So we can try

v = K(|x|)−K(r).

We get

u(0) = c

∫
∂B
u dσ.

This holds for all harmonic functions. If we set u = 1, then we get c = 1
|∂B| , so u =

1
|∂B|

∫
∂B u.

Corollary 22.1. If u(x0) = maxu for x0 ∈ B, then u is constant in B.

Remark 22.5. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum in this property.

Theorem 22.3 (Strong maximal principle). Suppose u ∈ C2(Ω)∩C(Ω) is harmonic. Then

max
Ω

u = max
∂Ω

u.

Moreover, if maxu is attained inside Ω, then u is constant.

The hypotheses here are much stronger than they need to be.
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Remark 22.6. If u is subharmonic, the same holds. But if u is superharmonic, then we
need to replace the maximum with the minimum.

Proof. If maxu is only attained on ∂Ω, then we ar edone. What if maxu is attained at
x0 ∈ Ω? Here is a proof by picture. Put a ball around x0. By the corollary, u is constant
in B. Then the other points in this ball are maximum points, and we can get to any other
point via a sequence of balls.

If you want to write down a proof, you can use path-connectedness, or you can use an
argument like this: Let A = {x ∈ Ω : u(x) = u(x0)}. Since u is continuous, A is closed.
But the corollary says that if x0 ∈ A, then B(X0, r) ⊆ A. So A is open. Thus, A ⊆ Ω is
open and closed, and if Ω is connected, we get A = Ω.

The maximal principle is much more general than the proof we have given here. Here
is a restatement of this property:

Corollary 22.2 (Comparison principle). Let u be subharmonic, i.e., −∆u ≤ 0, and let v
be subharmonic, i.e., −∆v ≥ 0. If u ≤ v on ∂Ω, then u ≤ v in ∂Ω.

Proof. Apply the maximal principle to u− v.

This comparison principle is the correct statement for nonlinear elliptic stuff and also
for the Hamilton-Jacobi equations. There is a simpler proof of the maximum principle
without the use of the fundamental solution where we drop the strong part.

Proof. Suppose first that −∆u < 0. Let x0 be a maximum point inside Ω. Then ∇u(x0) =

0, and Hu(x0) ≺ 0, where H = ∂2u
∂xi∂xj

is the Hessian matrix. Observe that

∆u =
∑
j

∂j∂ju = trHu ≤ 0.

122



Then ∆u(x0) ≤ 0, so −∆u(x0) ≥ 0. But this contradicts our assumption that −∆u < 0.
Now if −∆u ≤ 0, then we penalize u by replacing u by uε = u+ εx2. Then

−∆uε = −∆u− 2uε < 0.

This tells us that
max

Ω
uε = max

∂Ω

uε.

If we let ε→ 0, both sides converge uniformly to maxΩ u and max∂Ω u, respectively.

22.3 Liouville’s theorem

We have been looking at harmonic functions in a domain Ω. What if we are looking at
harmonic functions in all of Rn? If you allow exponential growth, then the sky is the limit
as to what you can get. But what if we only want polynomial growth. Further yet, what
if u is bounded?

Theorem 22.4 (Liouville). Let u be harmonic in Rn. If u is bounded, then u is constant.

Proof. If u is harmonic, so are its derivatives. Then

u(x0)
MVP
= 6
∫

Ω
∂ju(x) dx

=
1

|BR|

∫
∂BR

u · νj dσ(x).

If |u| ≤M , we can estimate this by

|∂ju(x0)| ≤ 1

BR︸︷︷︸
Rn

M |∂BR|︸ ︷︷ ︸
Rn−1

.
M

R
R→∞−−−−→ 0.

So ∇u(x0) = 0, which means that u is constant.

Remark 22.7. If u is temperate, then û||ξ|2 = 0, so û is supported at 0. Then û =∑
α cα∂

(α)
0 , which implies that u is a polynomial. Thus all temperate harmonic functions

are polynomials. This also serves as a proof of Liouville’s theorem, since the only bounded
polynomials are constant.
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22.4 Boundary value problems

Let Ω ⊆ Rn, and suppose that {
−∆u = f in Ω

u = g on ∂Ω.

This give us uniqueness: Suppose u1, u2 are solutions. If u1 − u2 = v, then v is harmonic.
The maximum and minimum principles give

max
Ω

v ≤ max
∂Ω

v = 0,

min
Ω
v ≥ min

∂Ω
v = 0.

So v = 0.
There is also a proof of existence using hte maximum principle. Consider a subsolution

v− satisfying {
−∆v− ≤ f
v ≤ g

and a supersolution satisfying {
−∆v+ ≥ f
v ≥ g

The maximum principle v∗ ≥ v−. Taking the maximum over all supersolutions and subso-
lutions gives the largest subsolution and the smallest supersolution.

This is called Perron’s method. We can also find a fundamental solution in Ω, called a
Green function.
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23 Boundary Value Problems for the Laplace Equation

23.1 The Dirichlet and Neumann problems

Last time, we were looking at the Laplace equation

−∆u = f in Rn.

We saw a few ways to look at this:

• via the fundamental solution. This led to elliptic regularity.

• via the maximum principle. This gave us a way to prove uniqueness of solutions.

• via energy estimates. This is what we will discuss today.

When we look at the Laplace equation, we need some boundary behavior¿ The Dirich-
let problem is to solve the Laplace equation with the following boundary condition.{

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω

Alternatively, we can look at the Neumann problem with a boundary condition on the
normal derivative of the solution.{

−∆u = f in Ω ⊆ Rn
∂u
∂ν = g on ∂Ω

Can we impose both the Dirichlet and Neumann boundary conditions? The answer is
not always. The equation 

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω
∂u
∂ν = g on ∂Ω

is an overdetermined problem. It makes sense to consider this locally.

This local problem will in general have uniqueness but not neccesarily existence. This leads
to a type of problem called a unique continuation problem.
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23.2 Uniqueness concerns for the Dirichlet and Neumann problems

Proposition 23.1 (Uniqueness for the Dirichlet problem). The solution to the Dirichlet
problem {

−∆u = f in Ω ⊆ Rn

u = g on ∂Ω

is unique.

Proof. Suppose u1, u2 are solutions. Then v = u1 − u2 solves{
−∆v = 0 in Ω ⊆ Rn

v = 0 on ∂Ω.

We want to show that v = 0. We have

0 =

∫
−∆v · v dx

=

∫
−∂j∂jv · v dx

Green’s theorem gives

=

∫
∂jv∂̇jv −

∫
∂Ω

∂v

∂ν
· v︸︷︷︸

=0

dσ.

So we get

0 =

∫
Ω
|∇v|2 dx,

which tells us that ∇v = 0 in Ω. Thus, v is constant, and the boundary condition tells us
that v = 0.

Remark 23.1. What about uniqueness of the Neumann problem?{
−∆u = f in Ω ⊆ Rn
∂u
∂ν = g on ∂Ω

By the same computation, we still get that∫
Ω
|∇u|2 = 0,

which tells us that u is constant. The boundary condition is satisfied by any constant,
however. So solutions are unique modulo constants.
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23.3 Existence using energy type estimates

If f : R→ R, then a minimum point x0 for f must have f ′(x0) = 0. We can do the reverse.
If we have an equation for a function, we can write it as the derivative of another function
and interpret our equation as finding the minimizers (or critical points) for this function.

Looking at functions u : Ω ⊆ Rn → R, associate the functional

L(u) =

∫
Ω
|∇u|2 − f · u dx.

We will call this the Lagrangian of the problem. Our goal is to minimize L(u) over a
good class of functions u; we can assume some nice regularity and our boundary condition.
Let A = {u : Ω→ R | u ∈ C2, u = 0 on ∂Ω}. So we want

min
u∈A
L(u).

Does a minimum exist? We will not answer this today, but observe that L is strictly convex
because it is the sum of a positive quadratic form and a linear term. If we have a minimum,
then by strict convexity, the minimum will be unique.

We may also ask: What equation does a minimum satisfy? Suppose u is a minimum.
Take v ∈ D(Ω), and set uh = u+ hv.

Look at L(uh) as a function of h. This has a minimum at h = 0, which tells us that

d

dh
L(uh) = 0 at h = 0.

Write

L(uh) =

∫
|∇(u+ hv)|2 − f · (u+ hv) dx,

so
∂

∂h
L(uh)|h=0 =

∫
∇u · ∇v − f · v dx.

Hence,

0 =

∫
∇u · ∇v − fcv̇ dx

127



for all v ∈ D(Ω). Integration by parts gives us

=

∫
Ω
−∆u · v − fv dx

=

∫
Ω
v(−∆u− f) dx.

So we get
−∆ = f in Ω.

And we can append our favorite boundary condition.

Remark 23.2. The regularity condition u ∈ C2 is not the correct condition to use. Really,
we want to use Sobolev spaces, which we have not discussed yet.

23.4 Green’s functions for domains with boundary

Circle back to the fundamental solution and try to use it in a domain with boundary. We
will look at how this doesn’t work and how it can be fixed. In Rn, we have the formal
computation ∫

−∆u ·K(x− x0) dx =

∫
u · −∆K︸︷︷︸

δx0

(x− x0) dx.

If −∆u = f , then ∫
f ·K(x− x0) dx = u(x0).

What about a domain with boundary?∫
Ω
−∆u ·K(x− x0) dx =

∫
u · −K(x− x0) dx+

∫
∂Ω
−∂u
∂ν
·K(x− x0) + u · ∂

∂ν
K(x− x0) dσ.

If u solves the Dirichlet problem{
−∆u = f in Ω ⊆ Rn

u = g on ∂Ω,

then

u(x0) =

∫
Ω
f(x)K(x− x0) dx+

∫
∂Ω

∂u

∂ν
K(x− x0)− g · ∂K

∂ν
(x− x0) dσ,

but we do not know what ∂u
∂ν is. We do not have this information, and recall that if we do,

then we have an overdetermined problem.
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How do we fix this? Perhaps the fundamental solution is not the object we want to be
looking at. Replace K(x− x0) by G(x, x0) to get∫

Ω
−∆u ·G(x− x0) dx =

∫
u · −G(x− x0) dx+

∫
∂Ω
−∂u
∂ν
·G(x− x0) + u · ∂

∂ν
K(x− x0) dσ.

We would like the properties{
−∆xG(x, x0) = δx0 ,

G(x, x0) = 0 x ∈ ∂Ω.

If we have these properties, then

u(x0) =

∫
Ω
f ·G(x, x0) dx+

∫
∂Ω
g
∂

∂ν
G(x, x0) dσ.

If we had such a function G, then we could solve the Dirichlet problem. Call this function
G the Green function22 in Ω.

Remark 23.3. G = G(x, x0), not G(x − x0) because translation invariance is broken by
our domain. If you translate the domain with boundary, you will not get the same domain.

To find such a function G, we would try

G(x, x0) = K(x− x0) + ψ(x, x0)

and look for an equation for ψ. We need{
−∆xψ(x, x0) = 0 in Ω

ψ(x, x0) = −K(x− x0) x ∈ ∂Ω.

K(x− x0) is smooth for x ∈ ∂Ω and x0 ∈ Ω, so by elliptic regularity, ψ should be smooth.
ψ can be found by solving a Dirichlet problem.

Remark 23.4. You may think this is leading us in a circle, but this is not the case: Here,
we are solving a Dirichlet problem with a very special boundary data, K(x − x0). This
may make the Green’s function easier to find than solving the original equation otherwise.

Remark 23.5. The Green function is symmetric:

G(x, y) = G(y, x).

Let’s calculate some Green’s functions.

22If we are solving the Neumann problem, we may get a different Green function
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Example 23.1 (half-plane). Let Ω = {xn > 0}. The idea is to calculate G using symme-
tries. Here is the picture we should have in mind:

We have
G(x, x0) = K(x− x0) + ψ(x, x0).

If we were to use x∗0, then K(x− x∗0) is harmonic in Ω. Now also observe that for x ∈ ∂Ω,
|x−x0| = |x−x∗0| for x ∈ ∂Ω. Thus, the radial symmetry of K gives K(x−x0) = K(x−x∗0).
This implies that we can choose

G(x, x0) = K(x− x0)−K(x− x∗0).

Example 23.2 (unit ball). Let Ω = B(0, 1). Here, we can try repeating the same argument
but with inversion about the boundary of the circle:

If we have point x ∈ ∂Ω, then

|x− x0| = |x− x∗0| · |x0|.

So if we are in Rn for n ≥ 3,

G(x, x0) = K(x− x0)− |x− 0|2−nK(x− x∗0)

The proportionality constant comes from the fact that the first term is like |x − x0|2−n,
while the second term is like |x− x∗0|2−n.
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These kinds of computations are available only in very specific domains, so the existence
of Green’s functions is more of a qualitative question than a computational one.
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24 Boundary Value Problems for the Heat Equation

24.1 Properties of the heat equation

Consider the heat equation in R+ × Rn.{
(∂t −∆)u = f

u(0) = u0

We have already seen how to derive a solution via the fundamental solution:

u = f ∗x,t K(t) + u0 ∗x K(t), K(t) =
1

(4πt)n/2
e−x

2/(4t)
1{t≥0}.

This is the unique solution going forward in time which is a temperate distribution.
Here are some key properties for the homogeneous equation given by this fundamental

solution: Consider the heat equation in R+ × Rn.{
(∂t −∆)u = 0

u(0) = u0

• Infinite speed of propagation: Even if u0 has compact support, the solution u imme-
diately spreads to all of Rn.

• Instant regularization:
u(t) = K(t) ∗ u0,

where K(t) is smooth for t > 0. So u is smooth for t > 0.

• The fundamental solution has Gaussian decay at∞: This means that any initial data
u0 with |u0| ≤ ecx

2
will generate a local in time solution

24.2 The mean value property and the maximum principle

Now let’s look at the heat equation in a domain Ω ⊆ Rn.
(∂t −∆)u = f in Ω× R+

u(t = 0) = u0 in Ω

u(t, x) = g on ∂Ω× R+

The third equation is a Dirichlet boundary condition. We could replace it with a
Neumann boundary condition

∂u

∂ν
(t, x) = g on ∂Ω× R+.
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As with the Laplace equation, we use either one boundary condition or the other but not
both.

Here are several ways to approach this:

• Via a maximum principle.

• Via energy estimates.

• Using Green’s functions.

We first discuss the maximum principle. First, is there a mean value property for the
heat equation? We would like to write something like

u(t0, x0) =
1

|D|

∫
D
u(t, x) dx.

for some D. For the Laplace equation, we used a ball for D, but this should not be the
case for the heat equation; unlike for the Laplace equation, balls are not level sets of the
fundamental solution. We may also ask if we need any weights for the maximum principle.

Step 1: Green’s theorem for the heat equation: Let u, v be such that v has compact
support. Then ∫∫

(∂t −∆)u · v dx dt =

∫∫
(−∂t −∆)v · u dx dt.

If we want to get u(0, 0) out of the right hand side, then we would need (−∂t−∆)v = δ(0,0).
Here, −∂t −∆ is the adjoint heat operator, which is a “backward heat operator” and
gives a backward heat equation with a fundamental solution

Kback(x, t) = − 1

(4π|t|)n/2
ex

2/(4t)
1{t≤0}.

Define the parabolic balls

Dr(0, 0) = {|Kback(x, t)| ≤ r−n}.

What do these sets look like? If x = 0, then K � t−n/2, and t−n/2 ≥ r−n iff t ≤ r2. To
figure out the sideways boundaries of these regions, take t ≈ 1

2r
2. Now change x so that

ex
2/(4t) & 1. Then |x| ≤

√
t ≈ r. This looks like an ellipse, but near (0, 0), there is a

logarithmic coorection to a parabola.
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Our goal is to show that

u(0, 0) =

∫
Dr(0,0)

ω(t, x)u(t, x) dx

for some suitable positive weight ω (we want positive so we can think of this as an average).
Look at our Green’s theorem in Dr(0, 0), which gives boundary terms:∫∫

Dr(0,0)
(∂t −∆)u · v dx dt =

∫∫
Dr(0,0)

(−∂t −∆)v · u dx dt

+

∫
∂Dr(0,0)

νt · uv −
∂u

∂ν
· v + u · ∂v

∂ν
dσ.

For v = Kback(t, x), this does not work because we get boundary terms. Instead, we can
try

v = Kback(t, x) + r−n,

which makes v = 0 on ∂Dr(0, 0). This makes the first two boundary terms equal 0, but
we would also like to make sure that ∂v

∂ν = 0 on ∂Dr(0, 0). This is the same as saying that
∇v = 0 on ∂Dr. The way we can alter our fundamental solution to take advantage of this
is

v = Kback(t, x) + r−n + c ln(−Kback · rn),

where c is chosen so that ∇v = 0 on ∂Dr(0, 0). This choice gives us

∇v = ∇K + c
∇K
K

= ∇K
(

1 +
c

K

)
,

and since K = −rn on the boundary, we can pick c = rn.
If (∂t −∆)u = 0, then we get∫∫

Dt(−∂ −∆)v · u dx dt = 0.

We can calculate

(−∂t −∆)v = δ(0,0) + c(−∂t −∆) ln(−rnKback)

= δ(0,0) − c
∂tK

back

Kback
− c∇ · ∇K

back

Kback

= δ(0,0) − c
(∂t −∆)Kback

Kback︸ ︷︷ ︸
=0

+c
(∇Kback)2

(Kback)2
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= δ(0,0) + c(∇ lnKback)2,

where this is a spatial gradient.

= δ(0,0) − r−n
x2

4t2
.

We get:

Theorem 24.1 (Mean value property). If (∂t −∆)u = 0 in Ω× [0, T ],

u(0, 0) = r−n
∫
Dr(0,0)

x2

4t2
u(t, x) dx dt

Remark 24.1. How do we know this is an average? This holds for all solutions to the
heat equation, so plug in a constant. This gives

r−n
∫
Dr(0,0)

x2

4t
dx dt = 1.

So this is indeed a weighted average.

For our maximum principle, what is the boundary of our region CT = Ω× [0, T ]?

If you consider causality, the t = T boundary is determined by the rest, so it should not
be considered. Write ∂CT = Ω × {0} ∪ ∂Ω × [0, T ]. The first part is the bottom, and the
second part is the lateral boundary. Together, they make up the parabolic boundary
of CT .

Theorem 24.2 (Strong maximum principle). If (∂t −∆)u = 0 in Ω× [0, T ], then

max
CT

u = max
∂CT

u.

Further if u(t0, x0) = maxu for some (t0, x0) inside, then u is constant for t ≤ t0.

Proof. Take (t0, x0) to be a maximum inside. Then the mean value property gives

maxu = u(t0, x0)
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= r−n
∫

(x− x0)2

(t− t−0)2
u(t, x) dx dt

≤ r−n
∫

(x− x0)2

(t− t−0)2
maxu dx dt

= maxu.

Equality must hold, so u = maxu in Dr(t0, x0).

How do we get the whole region {t ≤ t0}? Here is a picture:

Remark 24.2. Just like with the Laplace equation, we can talk about subsolutions

(∂t −∆)u ≤ 0

and supersolutions
(∂t −∆)u ≥ 0.

Using the mean value property with inequalities gives a maximum principle for subsolutions
and a minimum principle for super solutions.

Theorem 24.3 (Comparison principle). Let u− be a subsolution and u+ be a supersolution
for the heat equation. If u− ≤ u+ on ∂CT , then u− ≤ u+ in CT .
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Proof. u− − u+ is a supersolution.

Here is a corollary of the maximum principle.

Corollary 24.1. The solution to the Dirichlet problem is unique.

Proof. Subtract two solutions to get u = u1 − u2. If
(∂t −∆)u = 0

u(0) = 0

u(∂Ω) = 0,

then the maximum principle tells us that u = 0.

24.3 Energy estimates

Consider the homogeneous Dirichlet problem
(∂t −∆)u = 0 in Ω× [0, T )

u(0) = u0

u(∂Ω) = 0,

and let

E(u(t)) =

∫
|u(t, x)|2 dx.

Then we can compute

∂

∂t
E(u(t)) = 2

∫
u · ut dx

= 2

∫
u ·∆u dx

= −2

∫
|∇u|2 dx

≤ 0,

which tells us that E is nonincreasing in time E(t) ≤ E(0). So if u0 = 0, then E(t) = 0,
which gives u(t) = 0.

We can also look at the relation

‖u(0)‖2L2 = ‖u(T )‖2L2 +

∫ t

0
|∇u|2L2 dx.

If we start with u(0) ∈ L2, we get∇u(t) ∈ L2 for a.e. t. We can think of this as a parabolic
regularizing effect.
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25 Initial Value Problems and Energy Estimates for the
Wave Equation

25.1 Initial value problems for the wave equation

Today, we will be looking at the wave equation
�u = f in Mn+1 = R× Rn

u(0) = u0

∂tu(0) = u1,

where
� = ∂2

t −∆x = −mαβ∂α∂β,

m =


−1

1
. . .

1

 .
We have seen that the fundamental solution (forward in time) is

K(t, x) =


1
21{t>|x|} n = 1

cn(t2 − x2)
(1−n)/2
+ n ≥ 2 even

cnδ
(n−1

2
)

t2−x2 n ≥ 2 odd

The solution for the inhomogeneous problem is u = K ∗ f (as if the Cauchy data equals
0 at −∞). The solution for the homogeneous problem (f = 0, u0, u1 6= 0) is a bit more
tricky. Let

ũ =

{
u t > 0

0 t < 0.

Let’s find an equation for ũ.

∆ũ =

{
∆u y ≥ 0

0 t < 0,

∂tũ =

{
∂tu y > 0

0 t < 0,
+ δt=0 · u0.

The second time derivative is then

∂tũ =

{
∂2
t u y > 0

0 t < 0,
+ δt=0 · u1 + δ′t=0 · u0.
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This gives us
�ũ = δt=0u1 + δ′t=0u0,

which implies that
ũ = K ∗t,x (δt=0u1 + δ′t=0u0).

Taking the convolution first in t gives

ũ(t) = K(t) ∗x u1 + ∂tK(t) ∗x u0.

Here are some properties of the wave equation:

• Finite speed of propagation: The solution only exists inside the positive cone.

• Huygens principle: When n ≥ 3 is odd, the fundamental solution is supported exactly
on the cone.

Suppose now that we have some region with initial data (u0, u1) which can be changed.
Where does the solution change? At each point, we have an upward cone, and we take the
union of these cones.

The domain of influence.is Ω = ∪x∈D{(0, x) + K}, where K is the forward cone. Now
suppose we only have initial data (u0, u1) in the domain D. Where can we find the solution?
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If we look at a point (t, x), then u(t, x) depends on u0, u1 in B(x, |t|). The value u(x, t)
is uniquely determined if B(x, |t|) ⊆ D. The union, {(t, x) : B(x, |t|) ⊆ D} is called the
domain of uniqueness for D.

Example 25.1. When the base domain B is a ball, then the domain of uniqueness C is
exactly a cone:

25.2 Energy estimates for the wave equation

Here’s how energy estimates work for the wave equation. When we say energy, we want to
think a quantity which is conserved. Suppose we have a vibrating string.

We can think of the energy as potential energy P , expressed in terms of “how extended is
the string.” This can be measured by some average of the slope of the string:

P =

∫
|∂xu|2 dx.

The second part of the energy should be the kinertic energy, which measures the velocity
of the string: ∫

|∂tu|2 dx.
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If we were physicists, we would have constants in front, but we are mathematicians, so we
will set some constants equal to 1. We can write the total energy as

E(u(t)) =
1

2

∫
|∂tu|2 + |∇xu|2 dx.

Theorem 25.1. If �u = 0, then E(u(t)) is constant.

Corollary 25.1. The wave equation has at most 1 solution.

Proof. The naive proof of this theorem is to take

d

dt
E =

∫
∂tu∂

2
t u+

n∑
j=1

∂ju · ∂t∂ju dx dt

=

∫
∂tu

n∑
j=1

∂j∂ju+
n∑
j=1

∂ju · ∂t∂ju dx dt

= 0

by Green’s theorem, assuming that u = 0 at ∞.

Why should we improve on this? We have seen that “conservation laws” imply features
of our problem. If we have

∂t u︸︷︷︸
density

+∂x F (u)︸ ︷︷ ︸
flux

= 0,

we can integrate to get ∫
∂tu dx = −

∫
∂xF (u) dx,

which tells us that

∂t

∫
u = 0.

For the wave equation, we have the energy density

e(t, x) =
1

2
|∂tu|2 + |∇xu|2,

so that

E =

∫
e.

Note that this doesn’t go the other way around; there may be many densities that integrate
to the same total energy E. We can look at

∂te(t, x) = ∂tu · ∂2
t u+ ∂ju · ∂t∂ju
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= ∂tu ·�u+ ∂tu · ∂2
j u+ ∂ju∂t∂ju

= ∂j(∂tu · ∂ju︸ ︷︷ ︸
energy flux

) + ∂tu ·�u

This leads us to another proof of the energy estimates for the wave equation:

Proof. Start with �u = 0, and get �u · ∂u = 0. Then integrate by parts.

Let’s see what happens when we take

�u · ∂ku = (∂2
t u− ∂j∂ju) · ∂ku

= ∂t(∂tu · ∂ku)− ∂tu · ∂t∂ku− ∂j(∂ju · ∂ku) + ∂ju · ∂j∂ku
We can think of the first and third terms as derivatives.

= ∂t(∂tu · ∂ku︸ ︷︷ ︸
density

)− 1

2
∂k(∂tu)2 − ∂j(∂ju∂ku) +

1

2
∂k(∂ju)2︸ ︷︷ ︸

divergence of a flux

.

We get a new, conserved quantity, the momentum

Pk =

∫
∂tu · ∂ku dx.

This tells you in what direction the energy is moving around. Conservation says that if the
energy is moving around in one direction, it will be moving in that same direction forever.

More generally, consider

�u ·Xu, where X =
∑

Xα∂α.

This gives a conserved quantity EX , which is positive definite if the vector field X is
forward time-like.

Remark 25.1. We can put the energy and the momentum into one conserved quantity,
called the energy-momentum tensor,

Tαβ(u) = ∂αu∂βu− 1

2
mαβ∂γu∂ju,
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where
∂α = mαβ∂βu.

For the wave equation, this looks like

∂0u = −∂0u, ∂ju = ∂ju.

This is a divergence free tensor:

∂αT
αβ = 0 ∀β if �u = 0.

If β = 0, this is the energy, and if β = j 6= 0, this is the momentum Pj .

25.3 Finite speed of propagation via energy estimates

The finite speed of propagation is a robust phenomenon. We can show this by providing a
proof which does not rely on the fundamental solution and only requires energy estimates.
If we have a ball B for our inital data, and a cone C, we want to show that (u0, u1) in B
uniquely determines the solution in C.

This is the same as saying that if (u0, u1) = (0, 0) in B, then u = 0 in C. Suppose we
want to show that u = 0 in the slice CT of the cone. We saw the following density flux
relation for the energy:

∂te(t, x) = ∂(∂tu · ∂u).

Integrate over C[0,T ], the section of the cone up to time T .∫
CT

e−
∫
C0

+

∫
∂C[0,T ]

e · νt − pjνx = 0

Moving the middle term to the right hand side, this tells us that

Energy(t = 0) = Energy(t = T ) + Flux(boundary).
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The former term is the part that is left in the cone, and the latter term is the part that
goes out. If the energy at time t = 0 is 0, then these two terms must both equal 0.

The remaining objective is to show that the Flux term is nonnegative. What does it
mean that the slope of the cone is −1? This means that the outward pointing normal is
ν = (1, ω) with |ω| = 1. Then

e · νt − pj · νj =
1

2
(u2
t + |∇xu|2)− ∂tu · ∂j · ωj

?
≥ 0.

We can use Cauchy-Schwarz twice to say

|∂tu · ∂ju · ωj | ≤ |∂tu| · |∂u|

≤ 1

2
(|∂tu|2 + |∂u|2).
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